Dependence of magnetic and microwave loss on evolving microstructure in yttrium iron garnet

  • Rodziah Nazlan
  • Ismayadi Ismail
  • Raba’ah Syahidah Azis
  • Zulkifly Abbas
  • Idza Riati Ibrahim
  • Fadzidah Mohd Idris
  • Farah Nabilah Shafiee
  • Azdiya Suhada Aripin
  • Nurul Ainaa Najihah Busra


The parallel magnetic and microwave loss dependence on microstructural evolutions in several polycrystalline yttrium iron garnet samples were studied in detail, focusing on the attendant occurrence of their relationships. In this study, polycrystalline YIG samples were synthesized by employing the mechanical alloying technique and sintering toroidal compacts at temperatures from 600 to 1400 °C. The samples were characterized for their evolution in crystalline phases, structure, microstructure, magnetic hysteresis parameters, microwave losses and electrical resistivity. The results showed an increasing tendency of the saturation magnetization with grain size, which is attributed to crystallinity increase in the grains. The M–H hysteresis loop results showed a transition from disordered-to-ordered magnetism which belongs to different magnetically dominant stages of formation. The starting appearance of room temperature ferromagnetic order suggested by the sigmoid-shaped loops seems to be dependent on crystallinity, phase purity and a sufficient number of large enough magnetic domain-containing grains having been formed in the microstructure. An increasing trend of transmission loss with grain size may be attributed to increment of loss contribution from hysteresis and domain wall resonance of the samples. The changes in crystallinity and microstructure, and the associated processes of microwave resonance and relaxation due to domain wall movements and damping of spin rotation contributes to the variations in transmission loss and ferromagnetic linewidth of the samples. The increased electrical resistivity while the microstructure was evolving is believed to strongly indicates improved phase purity and compositional stoichiometry.



Special dedication for the late Assoc. Prof. Dr. Mansor Hashim for leading this research project. The authors also thankful to Institute of Advanced Technology, Universiti Putra Malaysia for research facilities and financial support from the Ministry of Higher Education (MOHE) for providing the Fundamental Research Grant Scheme (FRGS; Vote No. 5524164) and MyBrainSc Scholarship.


  1. 1.
    G. Winkler, Magnetic Garnets (Friedr. Vieweg & Sons, Braunschweig/Wiesbaden, 1981)Google Scholar
  2. 2.
    R.D. Sanchez, J. Rivas, P. Vaqeiro, M.A. Lopez-Quintela, D. Caeiro, Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol–gel method. J. Magn. Magn. Mater. 247, 92 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Rajendran, S. Deka, P.A. Joy, A.K. Bhattacharya, Size-dependent magnetic properties of nanocrystalline yttrium iron garnet powders. J. Magn. Magn. Mater. 301, 212 (2006)CrossRefGoogle Scholar
  4. 4.
    J.C. Aphesteguy, A. Damiani, D. Di Giovanni, S.E. Jacobo, Microwave absorption behaviour of a polyaniline magnetic composite in the X-band. Physica B 407, 3168–3171 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Goldman, Modern Ferrite Technology (Van Nostraud Reinhold, New York, 2000)Google Scholar
  6. 6.
    S.B. Waje, M. Hashim, I. Ismail, Effects of sintering temperature on grain growth and the complex permeability of Co0.2Ni0.3Zn0.5Fe2O4 material prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater. 323, 1433–1439 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Atkins, J.D. Paula, R. Friedman, Physical Chemistry: Quanta, Matter and Change, 2nd edn. (Oxford University Press, Oxford, 2003)Google Scholar
  8. 8.
    M.A. Karami, H. Shokrollahi, B. Hashemi, Investigation of nanostructural, thermal and magnetic properties of yttrium iron garnet. J. Magn. Magn. Mater. 324, 3065–3072 (2012)CrossRefGoogle Scholar
  9. 9.
    F. Lamastra, R. Bianco, F. Leonardi, G. Montesperelli, F. Nanni, G. Gusmano, High density Gd-substituted yttrium iron garnets by coprecipitation. Mater. Chem. Phys. 107, 274–280 (2008)CrossRefGoogle Scholar
  10. 10.
    M.N. Akhtar, A.B. Sulong, M.A. Khan, M. Ahmad, G. Murtaza, R. Raza, M. Saleem, M. Kashif, Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminium iron garnet (YAIG) nanoferrites prepared by microemulsion method. J. Magn. Magn. Mater. 401, 425–431 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Metselaar, P.K. Larsen, Physics of Magnetic Garnets (North-Holland, Amsterdam, 1978)Google Scholar
  12. 12.
    F. Sanchez-De Jesus, C.A. Cortes, R. Valenzuela, S. Ammar, A.M. Bolarin-Miro, Synthesis of Y3Fe5O12 (YIG) assisted by high-energy ball milling. Ceram. Int. 38, 5257–5263 (2012)CrossRefGoogle Scholar
  13. 13.
    S.L. Kang, Sintering: Densification, Grain Growth and Microstructure (Butterworth-Heinemann, Elsevier, 2005)Google Scholar
  14. 14.
    W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, 1976)Google Scholar
  15. 15.
    S. Sameshima, K. Higashi, Y. Hirata, Sintering and grain growth of rare-earth doped ceria particles. J. Ceram. Proc. 1, 27–33 (2000)Google Scholar
  16. 16.
    M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (CRC Press, New York, 2003)Google Scholar
  17. 17.
    T. Jahanbin, M. Hashim, K.A. Matori, S.B. Waje, Influence of sintering temperature on the structural, magnetic and dielectric properties of Ni0.8Zn0.2Fe2O4 synthesized by co-precipitation route. J. Alloys Compd. 503, 111–117 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.K. Kay, R.H. Doremus, Hydroxyapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11, 2027–2035 (1976)CrossRefGoogle Scholar
  19. 19.
    M. Gharagozlou, Study of the influence of annealing temperature and ferrite content on the structural and magnetic properties of x(NiFe2O4)/(100-x)SiO2 nanocomposites. J. Alloys Compd. 495, 217–223 (2010)CrossRefGoogle Scholar
  20. 20.
    P.P. Hankare, S.D. Jadhav, U.B. Sankpal, S.S. Chavan, K.J. Waghmare, B.K. Chougule, Synthesis, characterization and effect of sintering temperature on magnetic properties of MgNi ferrite prepared by co-precipitation method. J. Alloys Compd. 475, 926–929 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Goldman, Handbook of Modern Ferromagnetic Materials (Kluwer Academic Publishers, The Netherlands, 1999)CrossRefGoogle Scholar
  22. 22.
    D. Jiles, Introduction to Magnetism and Magnetic Materials, 3rd edn. (Chapman & Hall/CRC, New York, 2015)Google Scholar
  23. 23.
    P. Roschmann, G. Winkler, Relaxation processes in polycrystalline substituted garnets with low ferrimagnetic resonance linewidth. J. Magn. Magn. Mater. 4, 105–115 (1977)CrossRefGoogle Scholar
  24. 24.
    F. Rivadulla, M.A. López-Quintela, L.E. Hueso, J. Rivas, M.T. Causa, C. Ramos, R.D. Sánchez, M. Tovar, Electron-spin-resonance line broadening around the magnetic phase transition in manganites. Phys. Rev. B 60, 11922–11925 (1999)CrossRefGoogle Scholar
  25. 25.
    U. Ozgur, Y. Alivov, H. Morkoc, Microwave ferrites, part 1: fundamental properties. J. Mater. Sci.: Mater. Electron. 20, 789–834 (2009)Google Scholar
  26. 26.
    F.N. Shafiee, R.S. Azis, I. Ismail, R. Nazlan, I.R. Ibrahim, A.S.A. Rahim, Magnetic and microwave properties of polycrystalline gadolinium iron garnet. Solid State Phenom. 268, 287–291 (2017)CrossRefGoogle Scholar
  27. 27.
    P. Vijaya, B. Reddy, B. Ramesh, C. Gopal Reddy, Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol–gel method. Physica B 405, 1852–1856 (2010)CrossRefGoogle Scholar
  28. 28.
    S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Structural and magnetic properties of In3+ substituted NiFe2O4. Mater. Chem. Phys. 117, 163–168 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Verma, D.C. Dube, Processing of nickel–zinc ferrites via the citrate precursor route for high-frequency applications. J. Am. Ceram. Soc. 88, 519–523 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rodziah Nazlan
    • 1
  • Ismayadi Ismail
    • 2
  • Raba’ah Syahidah Azis
    • 3
  • Zulkifly Abbas
    • 3
  • Idza Riati Ibrahim
    • 2
  • Fadzidah Mohd Idris
    • 2
    • 4
  • Farah Nabilah Shafiee
    • 2
  • Azdiya Suhada Aripin
    • 2
  • Nurul Ainaa Najihah Busra
    • 1
  1. 1.Department of Materials Technology, Faculty of Industrial Science and TechnologyUniversiti Malaysia PahangKuantanMalaysia
  2. 2.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Kolej PERMATA InsanUniversiti Sains Islam MalaysiaNilaiMalaysia

Personalised recommendations