Employment of rapid thermal annealing for solution-processed InGaZnO thin film transistors

  • Hyena Kwak
  • Jaehyun Yang
  • Jun-gu Kang
  • Tae-Yil Eom
  • Hyoungsub Kim
  • Hoo-Jeong Lee
  • Chiwon Kang


We employed rapid thermal annealing (RTA) as a novel approach to anneal indium–gallium–zinc–oxide films for thin film transistor (TFT) applications. We analyzed the binding states of the elements presented in the films annealed with RTA and hot plate based on X-ray photoelectron spectroscopy data. The investigation confirmed that the RTA samples underwent sol–gel reactions at a low temperature of 180 °C. We also acquired the transfer curves of the TFTs incorporated with the samples. The RTA samples exhibited a high on-current level, whereas the hot plate sample annealed at the same temperature demonstrated nearly no current flow. The data manifested that RTA generated both photonic and thermal energies, thus efficiently facilitating sol–gel reactions at a low temperature. Furthermore, we investigated on the energy band structures of the annealed films based on reflection electron energy loss spectroscopy and ultraviolet photoelectron spectroscopy analyses, discovering that the annealing atmosphere significantly affected the band structure of the film.



This work was supported by the Global Leading Technology Program of the Office of Strategic R&D Planning (OSP) funded by the Ministry of Knowledge Economy, Republic of Korea (10042537). Also, this work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) No. (CAP-15-04-KITECH).


  1. 1.
    M. ITO, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo, R. Matsubara, K. Hatta, Y. Ugajin, N. Sekine, J. Non-Cryst. Solids 354, 2777 (2008)CrossRefGoogle Scholar
  2. 2.
    H. Xu, D. Luo, M. Li, M. Xu, J. Zou, H. Tao, L. Lan, L. Wang, J. Peng, Y. Cao, J. Mater. Chem. C 2, 1255 (2014)CrossRefGoogle Scholar
  3. 3.
    Y.-S. Li, J.-C. He, S.-M. Hsu, C.-C. Lee, D.-Y. Su, F.-Y. Tsai, I.-C. Cheng, IEEE Electron Device Lett. 37, 46 (2016)CrossRefGoogle Scholar
  4. 4.
    Y.-H. Kim, M.-K. Han, J.-I. Han, S.K. Park, IEEE Trans. Electron Devices 57, 1009 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)CrossRefGoogle Scholar
  6. 6.
    J. Yang, H. Kwak, Y. Lee, Y.-S. Kang, M.,-H. Cho, J.H. Cho, Y.-H. Kim, S.-J. Jeong, S. Park, H.-J. Lee, H. Kim, ACS Appl. Mater. Interfaces 8, 8576 (2016)CrossRefGoogle Scholar
  7. 7.
    J.H. Lim, J.H. Shim, J.H. Choi, J.H. Joo, K. Park, H. Jeon, M.R. Moon, D. Jung, H. Kim, H.-J. Lee, Appl. Phys. Lett. 95, 012108 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Jeon, J. Song, S. Na, M. Moon, J. Lim, J. Joo, D. Jeong, H. Kim, J. Noh, H.-J. Lee, Thin Solid Films 540, 31 (2013)CrossRefGoogle Scholar
  9. 9.
    C.-Y. Tsay, T.-Y. Yan, J. Phys. Chem. Solids 75, 142 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Gao, J. Lu, J. Zhang, X. Li, J. Alloys Compd. 646, 675 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Fukuda, Y. Takeda, M. Mizukami, D. Kumaki, S. Tokito, Sci. Rep. 4, 3947 (2014)CrossRefGoogle Scholar
  12. 12.
    J.H. Park, S.J. Lee, T.I. Lee, J.H. Kim, C.-H. Kim, G.S. Chae, M.-H. Ham, H.K. Baik, J.-M. Myoung, J. Mater. Chem. C 1, 1840 (2013)CrossRefGoogle Scholar
  13. 13.
    J.-S. Seo, J.-H. Jeon, Y.H. Hwang, H. Park, M. Ryu, S.-H. Ko Park, B.-S. Bae, Sci. Rep. 3, 2085 (2013)CrossRefGoogle Scholar
  14. 14.
    J.P. Bermundo, Y. Ishikawa, M.N. Jii, H. Ikenoue, Y. Uraoka, Appl. Phys. Lett. 110, 133503 (2017)CrossRefGoogle Scholar
  15. 15.
    J.P. Bermundo, Y. Ishikawa, M.N. Jii, T. Nonaka, R. Ishigara, J. Phys. D 49, 035102 (2016)CrossRefGoogle Scholar
  16. 16.
    S.M. Kim, M.-J. Ahn, W.-J. Cho, J.T. Park, Microelectron. Reliab. 64, 575 (2016)CrossRefGoogle Scholar
  17. 17.
    H.-W. Lee, W.-J. Cho, AIP Adv. 8, 015007 (2018)CrossRefGoogle Scholar
  18. 18.
    M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011)CrossRefGoogle Scholar
  19. 19.
    Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon, J. Kim, M.S. Oh, G.-R. Yi, Y.-Y. Noh, S.K. Park, Nature 489, 128 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.S. Rim, W.H. Jeong, D.L. Kim, H.S. Lim, K.M. Kim, H.J. Kim, J. Mater. Chem. 22, 12491 (2012)CrossRefGoogle Scholar
  21. 21.
    T.-H. Yoon, Y.-K. Lee, B.-S. Lim, C.-W. Kim, J. Oral Rehabil. 29, 1165 (2002)CrossRefGoogle Scholar
  22. 22.
    S. Flora, A. Camoirano, A. Izzotti, C. Bennicelli, Carcinogenesis 11, 2171 (1990)CrossRefGoogle Scholar
  23. 23.
    S.D. Flora, F. D’agostini, Nature 356, 569 (1992)Google Scholar
  24. 24.
    M.-H. Kim, Y.-S. Ko, H.-S. Choi, S.-M. Ryu, S.-H. Jeon, J.-H. Jung, D.-K. Choi, Phys. Status Solidi A 213, 1 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Jeong, K. Song, T. Jun, S. Jeong, J. Moon, Thin Solid Films 519, 6164 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, T.J. Marks, Adv. Mater. 22, 1346 (2010)CrossRefGoogle Scholar
  27. 27.
    C.-S. Fuh, S.M. Sze, P.-T. Liu, L.-F. Teng, Y.,-T. Chou, Thin Solid Films 520, 1489 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Hwang, J.H. Lee, C.H. Woo, J.Y. Lee, H.K. Cho, Thin Solid Films 519, 5146 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Raja, K. Jang, N. Balaji, W. Choi, T.T. Trinh, J. Yi, Appl. Phys. Lett. 102, 083505 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, Y. Zheng, Appl. Phys. Lett. 102, 193505 (2013)CrossRefGoogle Scholar
  31. 31.
    R.A. Stree, Adv. Mater. 21, 2007 (2009)CrossRefGoogle Scholar
  32. 32.
    L. Petti, N. Munzenrieder, C. Vogt, H. Faber, L. Buthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, G. Troster, Appl. Phys. Rev. 3, 021303 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hyena Kwak
    • 1
  • Jaehyun Yang
    • 1
    • 2
  • Jun-gu Kang
    • 1
  • Tae-Yil Eom
    • 3
  • Hyoungsub Kim
    • 1
  • Hoo-Jeong Lee
    • 1
    • 3
  • Chiwon Kang
    • 1
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Semiconductor R&D CenterSamsung ElectronicsHwaseongRepublic of Korea
  3. 3.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations