ZnS@carbonaceous aerogel composites fabricated in production of hydrogen and for removal of organic pollutants



Novel hollow sphere morphologied zinc sulphide@carbonaceous aerogel (ZnS@CA) composites with different ZnS content were fabricated using a simple hydrothermal carbonization treatment following by a facile in situ growth method. The fabricated composites were used as catalysts for chemical degradation of the methylene blue (MB) and for hydrogen evolution. Our photocatalytic studies are found, from the photocatalytic results obtained by different ZnS@CA materials, that 55 wt%ZnS@CA exhibits the excellent photocatalytic performances for MB degradation and the highest rate of hydrogen production that are correspondingly 1.7- and 8.1-fold higher than that of pure ZnS. This improved photocatalytic performance could be mainly attributed by unique 3D catenulate carbon networks, which can be highly favorable to disperse of ZnS on the surface of CA. An synergetic properties between CA and ZnS could be highly beneficial to the photo-generated electron–hole separation. The hollow microsphere structured ZnS nanoparticles allow multi-reflections of light within the interior cavity and increases the capture efficiency of visible light. A possible photocatalytic mechanism of the main active radicals has also been proposed. This work opens up the new prospects for a low-cost biomass-based sulfide photocatalysts used for the environmental purification and hydrogen generation.



The authors gratefully acknowledged the National Natural Science Foundation (21676129, 21607063, 51402130), China Postdoctoral Science Foundation (2016M590421) and the Science & Technology Foundation of Zhenjiang (GY2016021 and GY2014028), and the Science & Technology Foundation of Yangzhou Zhenjiang(GY2016021, GY2017001 and YE201709).

Supplementary material

10854_2018_8866_MOESM1_ESM.docx (508 kb)
Supplementary material 1 (DOCX 508 KB)


  1. 1.
    C.L. Yu, W.Q. Zhou, H. Liu, Y. Liu, D.D. Dionysiou, Chem. Eng. J. 287, 117–129 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Tian, R.Y. Liu, Z. Liu, C.L. Yu, M.C. Liu, Chin. J. Catal. 38, 1999–2008 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Tian, Z. Wu, Z. Liu, C.L. Yu, K. Yang, L.H. Zhu, W.Y. Huang, Y. Zhou, Chin. J. Catal. 38, 1899–1908 (2017)CrossRefGoogle Scholar
  4. 4.
    U.A. Joshi, A. Palasyuk, D. Arney, P.A. Maggard, J. Phys. Chem. Lett. 1, 2719–2726 (2010)CrossRefGoogle Scholar
  5. 5.
    B. Chai, T.Y. Peng, P. Zeng, X.H. Zhang, X.J. Liu, J. Phys. Chem. C 115, 6149–6155 (2011)CrossRefGoogle Scholar
  6. 6.
    K. Maeda, K. Domen, J. Phys. Chem. C 111, 7851–7861 (2007)CrossRefGoogle Scholar
  7. 7.
    Y. Yan, C. Wang, X. Yan, L.S. Xiao, J.H. He, W. Gu, W.D. Shi, J. Phys. Chem. C 118, 23519–23526 (2014)CrossRefGoogle Scholar
  8. 8.
    D.G. Chen, F. Huang, G.Q. Ren, D.S. Li, M. Zheng, Y.J. Wang, Z. Lin, Nanoscale 2, 2062–2064 (2010)CrossRefGoogle Scholar
  9. 9.
    B. Siebers, L. Biadala, D.R. Yakovlev, A.V. Rodina, T. Aubert, Z. Hens, M. Bayer, Phys. Rev. B 91, 155304 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Thangavel, K. Krishnamoorthy, S.J. Kim, G. Venugopal, J. Alloys Compd. 683, 456–462 (2016)CrossRefGoogle Scholar
  11. 11.
    X.X. Yu, J.G. Yu, B. Cheng, B.B. Huang, Chem. Eur. J. 15, 6731–6739 (2009)CrossRefGoogle Scholar
  12. 12.
    A.P. Davis, C.P. Huang, Water Res. 25, 1273–1278 (1991)CrossRefGoogle Scholar
  13. 13.
    S.H. Elder, F.M. Cot, Y. Su, S.M. Heald, A.M. Tyryshkin, M.K. Bowman, Y. Gao, A.G. Joly, M.L. Balmer, A.C. Kolwaite, K.A. Magrini, D.M. Blake, J. Am. Chem. Soc. 122, 5138–5146 (2000)CrossRefGoogle Scholar
  14. 14.
    H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, ACS Nano 4, 380–386 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Hirakawa, P.V. Kamat, J. Am. Chem. Soc. 127, 3928–3934 (2005)CrossRefGoogle Scholar
  16. 16.
    C.L. Yu, Y. Bai, J.C. Chen, W.Q. Zhou, H.B. He, J.C. Yu, L.H. Zhu, S.S. Xue, Sep. Purif. Technol. 154, 115–122 (2015)CrossRefGoogle Scholar
  17. 17.
    A.M. Turek, I.E. Wachs, E. DeCanio, J. Phys. Chem. 96, 5000–5007 (1992)CrossRefGoogle Scholar
  18. 18.
    B.N. Patil, S.A. Acharya, Adv. Mat. Lett. 5, 113–116 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Gu, C.Z. Li, S.F. Wang, Inorg. Chem. 46, 5343–5348 (2007)CrossRefGoogle Scholar
  20. 20.
    M.H. Hsu, C.J. Chang, H.T. Weng, ACS Sustainable Chem. Eng. 4, 1381–1391 (2016)CrossRefGoogle Scholar
  21. 21.
    E. Unur, Microporous Mesoporous Mater. 168, 92–101 (2013)CrossRefGoogle Scholar
  22. 22.
    T.Y. Ying, K.L. Yang, S. Yiacoumi, C. Tsouris, J. Colloid Interface Sci. 250, 18–27 (2002)CrossRefGoogle Scholar
  23. 23.
    Y.Q. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, ACS Sustainable Chem. Eng. 2, 1492–1497 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.M. Ren, Q. Xu, J.M. Zhang, H.X. Yang, B. Wang, D.Y. Yang, J.H. Hu, Z.M. Liu, ACS Appl. Mater. Interfaces 6, 9689–9697 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Miao, G.L. Wang, S.M. Cao, X. Feng, J.H. Fang, L.Y. Shi, Phys. Chem. Chem. Phys. 17, 24901–24907 (2015)CrossRefGoogle Scholar
  26. 26.
    M.J. Shi, W. Wei, Z.F. Jiang, H.K. Han, J.R. Gao, J.M. Xie, RSC Adv. 6, 25255–25266 (2016)CrossRefGoogle Scholar
  27. 27.
    Y.Q. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, J. Mater. Chem. A 2, 7759–7765 (2014)CrossRefGoogle Scholar
  28. 28.
    F.F. Shi, L.L. Chen, C.S. Xing, D.L. Jiang, D. Li, M. Chen, RSC Adv. 4, 62223–62229 (2014)CrossRefGoogle Scholar
  29. 29.
    Y.J. Zhang, H.R. Xu, Q.B. Wang, Chem. Commun. 46, 8941–8943 (2010)CrossRefGoogle Scholar
  30. 30.
    B. Hu, S.H. Yu, K. Wang, L. Liu, X.W. Xu, Dalton Trans. 40, 5414–5423 (2008)CrossRefGoogle Scholar
  31. 31.
    R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38, 3401–3418 (2009)CrossRefGoogle Scholar
  32. 32.
    M.K. Joshi, A.P. Tiwari, H.R. Pant, B.K. Shrestha, H.J. Kim, C.H. Park, C.S. Kim, ACS Appl. Mater. Interfaces 7, 19672–19683 (2015)CrossRefGoogle Scholar
  33. 33.
    B. Grzyb, C. Hildenbrand, S.B. Fabry, D. Bégin, N. Job, A. Rigacci, P. Achard, Carbon 48, 2297–2307 (2010)CrossRefGoogle Scholar
  34. 34.
    L. Sun, Y.J. Zhang, X.S. Ye, H.N. Liu, H.F. Zhang, A.G. Wu, Z.J. Wu, ACS Sustainable Chem. Eng. 5, 7700–7708 (2017)CrossRefGoogle Scholar
  35. 35.
    H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, ACS Nano 3, 2693–2703 (2012)CrossRefGoogle Scholar
  36. 36.
    Z.Q. Wang, P.X. Jin, M. Wang, G.H. Wu, C. Dong, A.G. Wu, ACS Appl. Mater. Interfaces 8, 32862–32868 (2016)CrossRefGoogle Scholar
  37. 37.
    X.L. Wu, T. Wen, H.L. Guo, S.B. Yang, X.K. Wang, A.W. Xu, ACS Nano 4, 3589–3597 (2013)CrossRefGoogle Scholar
  38. 38.
    D.A. Reddy, R. Ma, M.Y. Choi, T.K. Kim, Appl. Surf. Sci. 324, 725–735 (2015)CrossRefGoogle Scholar
  39. 39.
    H. Zhao, Y.M. Dong, P.P. Jiang, G.L. Wang, H.Y. Miao, R.X. Wu, L.G. Kong, J.J. Zhang, C. Zhang, ACS Sustainable Chem. Eng. 3, 969–977 (2015)CrossRefGoogle Scholar
  40. 40.
    Z.F. Jiang, C.Z. Zhu, W.M. Wan, K. Qian, J.M. Xie, J. Mater. Chem. A 4, 1806–1818 (2016)CrossRefGoogle Scholar
  41. 41.
    D.L. Jiang, L.L. Chen, J.M. Xie, M. Chen, Dalton Trans. 43, 4878–4885 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin, Q. Zhang, Z.G. Chen, H.M. Li, Appl. Catal. B: Environ. 183, 254–262 (2016)CrossRefGoogle Scholar
  43. 43.
    Z.Y. Zhang, D.L. Jiang, D. Li, M.Q. He, M. Chen, Appl. Catal. B: Environ. 183, 113–123 (2016)CrossRefGoogle Scholar
  44. 44.
    Y.Y. Fan, W.G. Ma, D.X. Han, S.Y. Gan, X.D. Dong, L. Niu, Adv. Mater. 27, 3767–3773 (2015)CrossRefGoogle Scholar
  45. 45.
    Z.J. Sun, B.H. Lv., J.S. Li, M. Xiao, X.Y. Wang, P.W. Du, J. Mater. Chem. A 4, 1598–1602 (2016)CrossRefGoogle Scholar
  46. 46.
    B.Y. Chen, W.Q. Fan, B.D. Mao, H. Shen, W.D. Shi, Dalton Trans. 46, 16050–16057 (2017)CrossRefGoogle Scholar
  47. 47.
    C.L. Yu, F.F. Cao, X. Li, G. Li, Y. Xie, J.C. Yu, Q. Shu, Q.Z. Fan, J.C. Chen, Chem. Eng. J. 219, 86–95 (2013)CrossRefGoogle Scholar
  48. 48.
    D. Liu, Z.F. Jiang, C.Z. Zhu, K. Qian, Z.Y. Wu, J.M. Xie, Dalton Trans. 45, 2505–2516 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Junwei Lu
    • 1
  • Huihui Hu
    • 1
  • Saisai Yang
    • 1
  • Paramasivam Shanmugam
    • 1
  • Wei Wei
    • 2
  • Manickam Selvaraj
    • 1
  • Jimin Xie
    • 1
  1. 1.School of Chemistry & Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Center of Analysis and TestJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations