Er3+-doped ZnO/ZnAl2O4 multi-phase oxides acting as near-infrared active photocatalyst

  • Zhuozhuo Qin
  • Wenxia Liu
  • Zhenzhen Li
  • Huabin Chen
  • Guodong Li
  • Dehai Yu


Doping lanthanide ions in metal oxides is an efficient way to develop visible and near-infrared (NIR) active photocatalysts. Herein, we present a method to develop NIR active photocatalyst via doping Er3+ into ZnO/ZnAl2O4 multi-phase oxides by isomorphous replacement of Al3+ with Er3+ during the preparation of Zn/Al-hydrotalcite-like compound, specifically, the calcination of the hydrotalcite-like compound at 900 °C. The as-prepared Er3+-doped catalyst and its precursor were characterized using X-ray diffraction technique, scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and near-infrared-visible-ultraviolet diffused reflectance spectroscopy. It was found that the doping of Er3+ causes lattice expansion for ZnO and ZnAl2O4, and yields optical absorptions at visible and NIR light regions. The obtained Er3+-doped ZnO/ZnAl2O4 multi-phase oxides produce superoxide and hydroxyl radicals in the photocatalytic process, and show enhanced ultraviolet (UV) photocatalytic activity on degradation of methyl orange, compared to undoped ZnO/ZnAl2O4 multi-phase oxides. The Er3+-doped ZnO/ZnAl2O4 multi-phase oxides also possess visible and NIR light photocatalytic activities, and its photocatalytic activity is rather stable under UV, visible and NIR light irradiation. This work provides a new way for doping of lanthanide ions in metal oxides and designing full-spectrum photocatalysts.



The project was funded by the National Natural Science Foundation of China (Grant No. 31270625). The authors thank Mr. Ruoyu Liu from Reed College for his thorough English revision and academic discussion on the manuscript. Dr. Haidong Li from Qingdao University is acknowledged for his help in XPS analysis.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.


  1. 1.
    X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45, 2603 (2016)CrossRefGoogle Scholar
  2. 2.
    Z. Aghajani, A.A. Engashte-Vahed, M.R. Zand-Monfared, J. Mater. Sci.: Mater. Electron. 28, 17338 (2017)Google Scholar
  3. 3.
    K. Nithiyadevi, K. Ravichandran, J. Mater. Sci.: Mater. Electron. 28, 10929 (2017)Google Scholar
  4. 4.
    Y. Tang, W. Di, X. Zhai, R. Yang, W. Qin, ACS Catal. 3, 406 (2013)Google Scholar
  5. 5.
    X. Xiang, L. Xie, Z. Li, F. Li, Chem. Eng. J. 221, 222 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Samad, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Nayak, K.M. Parida, Int. J. Hydrogen Energy 41, 21166 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Zhu, Z. Zhu, H. Zhang, H. Lu, Y. Qiu, L. Zhu, S. Küppers, J. Colloid Interface Sci. 481, 144 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Suárez-Quezada, G. Romero-Ortiz, V. Suárez, G. Morales-Mendoza, L. Lartundo-Rojas, E. Navarro-Cerón, F. Tzompantzi, S. Robles, R. Gómez, A. Mantilla, Catal. Today 271, 213 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Reszczyńska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Appl. Surf. Sci. 307, 333 (2014)CrossRefGoogle Scholar
  11. 11.
    L.M. Lozano-Sáncheza, S. Obregón, L.A. Díaz-Torres, S.-W. Lee, V. Rodríguez-González, J. Mol. Catal. A 410, 19 (2015)CrossRefGoogle Scholar
  12. 12.
    D. de la Cruz, J.C. Arévalo, G. Torres, R.G.B. Margulis, C. Ornelas, A. Aguilar-Elguézabal, Catal. Today 166, 152 (2011)CrossRefGoogle Scholar
  13. 13.
    A.C. Eduardo, A. de Figueiredo, M.S. Li, E. Longo, Ceram. Int. 40, 15981 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Obregón, A. Kubacka, M. Fernández-García, G. Colón, J. Catal. 299, 298 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Obregón, G. Colón, Chem. Commun. 48, 7865 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Han, G. Zhu, M. Hojamberdiev, J. Peng, P. Liu, J. Mater. Sci. 51, 2057 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Shan, Y. Liu, J. Mol. Catal. A 416, 1 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.L. Hu, Z. Wu, X. Zheng, N. Lin, Y. Yang, J. Zuo, D. Sun, C. Jiang, L. Sun, C. Lin, Y. Fu, J. Alloys Compd. 709, 42 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, S. Jin, Chem. Mater. 27, 5702 (2015)CrossRefGoogle Scholar
  20. 20.
    E.M. Seftel, M.C. Puscasu, M. Mertens, P. Cool, G. Carja, Appl. Catal. B 150–151, 157 (2014)CrossRefGoogle Scholar
  21. 21.
    F. Tzompantzi, G. Mendoza-Damián, J.L. .Rico, A. Mantilla, Catal. Today 220–222, 56 (2014)CrossRefGoogle Scholar
  22. 22.
    E.M. Seftel, E. Popovici, M. Mertens, K. De Witte, G. Van Tendeloo, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 113, 296 (2008)CrossRefGoogle Scholar
  23. 23.
    L. Zhang, J. Yan, M. Zhou, Y. Yang, Y.N. Liu, Appl. Surf. Sci. 268, 237 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Hu, W. Liu, W. Gao, H. Liu, L.A. Lucia, Chem. Eng. J. 277, 150 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Chen, W. Liu, Z. Qin, Catal. Sci. Technol. 7, 2236 (2017)CrossRefGoogle Scholar
  26. 26.
    W. Gao, W. Liu, Y. Leng, X. Wang, X. Wang, B. Hu, D. Yu, Y. Sang, H. Liu, Appl. Catal. B 176, 83 (2015)CrossRefGoogle Scholar
  27. 27.
    G.Q. Wan, D.X. Li, C.F. Li, J. Xu, W.G. Hou, Chin. Chem. Lett. 23, 1415 (2012)CrossRefGoogle Scholar
  28. 28.
    Y.X. Yuan, Y. Wang, J. Wang, C. Zhou, Q. Tang, X. Rao, Chem. Eng. J. 221, 204 (2013)CrossRefGoogle Scholar
  29. 29.
    V.R.L. Constantino, T.J. Pinnavaia, Catal. Lett. 23, 361 (1994)CrossRefGoogle Scholar
  30. 30.
    G.T.K. Swami, F.E. Stageberg, A.M. Goldman, J. Vac. Sci. Technol. A 2, 767 (1984)CrossRefGoogle Scholar
  31. 31.
    X. Yang, H. Xue, Q. Yang, R. Yuan, W. Kang, C.S. Lee, Chem. Eng. J. 308, 340 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Chen, X.L. Xu, Physica B 406, 3121 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, H. Liu, Adv. Mater. 25, 5075 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Chen, W. Liu, B. Hu, Z. Qin, H. Liu, Nanoscale 9, 18940 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B 125, 331 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Xing, Z. Wu, D. Jiang, M. Chen, J. Colloid Interface Sci. 433, 9 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Chen, W. Liu, W. Gao, Appl. Surf. Sci. 368, 288 (2016)CrossRefGoogle Scholar
  38. 38.
    D.F. Ollis, C.Y. Hsiao, L. Budiman, C.L. Lee, J. Catal. 88, 89 (1984)CrossRefGoogle Scholar
  39. 39.
    H. Al-Ekabi, N. Serpone, E. Pelizzetti, C. Minero, M.A. Fox, R.B. Draper, Langmuir 5, 250 (2002)CrossRefGoogle Scholar
  40. 40.
    J.C. Barreto, G.S. Smith, N.H.P. Strobel, P.A. McQuillin, T.A. Miller, Life Sci. 56, 89 (1995)Google Scholar
  41. 41.
    V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998)CrossRefGoogle Scholar
  42. 42.
    X. Li, F. Zhang, D. Zhao, Nano Today 8, 643 (2013)CrossRefGoogle Scholar
  43. 43.
    V. Nguyen, T.K.C. Tran, D.V. Nguyen, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 045011 (2011)Google Scholar
  44. 44.
    P. Martín-Ramos, P. Chamorro-Posada, M.R. Silva, P.S. Pereira da Silva, I.R. Martín, F. Lahoz, V. Lavín, J. Martín-Gil, Opt. Mater. 41, 139 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Pulp & Paper Science and Technology (Ministry of Education)Qilu University of TechnologyJinanChina

Personalised recommendations