Abstract
The purpose of this study is to understand the effects of substrate temperature (ST) and post deposition annealing (PDA) on the structural-electrical properties of Gd2O3 film and to evaluate the electrical performances of the MOS based devices formed with this dielectric. The Gd2O3/Si structures were annealed at 500, 600, 700, and 800 °C under N2 ambient after the films were grown on heated p-Si substrate at various temperatures ranged from 20 to 300 °C by RF magnetron sputtering. For any given ST, the crystallization/grain size increased with increasing PDA temperature. The bump in the accumulation region or continuous decrease in the capacitance values of the inversion region of the C–V curves for 800 °C PDA was not observed. The lowest effective oxide charge density (Qeff) value was obtained to be − 1.13 × 1011 cm−2 from the MOS capacitor with Gd2O3, which is grown on heated Si at 300 °C and annealed at 800 °C. The density of the interface states (Dit) was found to be in the range of 0.84 × 1011 to 1.50 × 1011 eV−1 cm−2. The highest dielectric constant (ε) and barrier height \(({\Phi _B})\) values were found to be 14.46 and 3.68, which are obtained for 20 °C ST and 800 °C PDA. The results show that the negative charge trapping in the oxide layer is generally more than that of the positive, but, it is reverse of this situation at the interface. The leakage current density decreased after 20 °C ST, but no significant change was observed for other ST values.
Similar content being viewed by others
References
H.W. Chen, F.C. Chiu, C.H. Liu, S.Y. Chen, H.S. Huang, P.C. Juan, H.L. Hwang, Appl. Surf. Sci. 254, 6112 (2008)
P. Laha, I. Banerjee, A. Bajaj, P. Chakraborty, P.K. Barhai, S.S. Dahiwale, A.K. Das, V.N. Bhoraskar, D. Kim, S.K. Mahapatra, Radiat. Phys. Chem. 81, 1600 (2012)
S. Kaya, E. Yilmaz, IEEE Electr. Device. 62, 980 (2015)
V.S.S. Srinivasan, A. Pandya, Thin Solid Films. 520, 574 (2011)
A. Kahraman, E. Yilmaz, A. Aktag, S. Kaya, IEEE Trans. Nucl. Sci. 63, 1284 (2016)
D. Schwendt, D. Tetzlaff, E. Bugiel, H.J. Osten, International Conference on Signals, Circuits and Systems, (2009), p. 1
A.G. Khairnar, A.M. Mahajan, Solid State Sci. 15, 24 (2013)
A. Kahraman, E. Yilmaz, S. Kaya, A. Aktag, J. Mater. Sci. 26, 8277 (2015)
K.F. Albertin, M.A. Valle, I. Pereyna, J. Integr. Circuits Syst. 2, 89 (2007)
V.V. Afanas’ev, A. Stesmans, L.F. Edge, D.G. Schlom, T. Heeg, J. Schubert, Appl. Phys. Lett. 88, 032101–032104 (2006)
T. Tan, Z. Liu, H. Lu, W. Liu, F. Yan, Vacuum. 83, 1155 (2009)
J. Robertson, J. Vac. Sci. Technol. B. 18, 1785 (2000)
Y. Li, N. Chen, J. Zhou, S. Song, L. Liu, Z. Yin, C. Cai, J. Cryst. Growth. 265, 548 (2004)
S. Yue, F. Wei, Y. Wang, Z. Yang, J. Du, Symposia D, E and F from MRS International Materials Research Conference, vol 152, pp. 012004–012001 (2009)
M.R.S. Huang, C. Liu, J. Wang, Y. Chen, C. Lai, Y. Fang, L. Shu, Thin Solid Films. 520, 5579 (2012)
C. Zhao, C. Zhao, M. Werner, S. Taylor, P.R. Chalker, Int. Sch. Res. Net. 689021–689023 (2012)
X. Cheng, D. Xu, Z. Song, D. He, Y. Yu, Q. Zhao, D. Shen, Appl. Surf. Sci. 256, 912 (2009)
K. Xu, R. Ranjith, A. Laha, H. Parala, A.P. Milanov, R.A. Fischer, E. Bugiel, J. Feydt, S. Irsen, T. Toader, C. Bock, D. Rogalla, H. Osten, U. Kunze, A. Devi, Chem. Mater. 24, 651 (2012)
J. Wang, Y. Hao, H. Zhang, H. Wei, J. Mu, Phys. E. 80, 185 (2016)
S. Yue, F. Wei, Y. Wang, Z. Yang, T. Hu, J. Rare Earth. 26, 371 (2008)
A. Laha, H.J. Osten, A. Fissel, Appl. Phys. Lett. 90, 113501–113503 (2007)
M. Pattabi, G.A.K. Thilipan, DAE Solid State Physics Symposium, 2016, AIP Conference Proceedings 1832, 080020-1 (2017)
B.D. Cullity, Element of X-ray Diffraction, 3rd edn. (Addition-Wesley, Reading, 2001)
D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer, M.J. Kirkham, C.R. Eddy Jr., J.H. Edgar, ECS J. Solid State Sci. 2, N110 (2013)
C. Andersson, Passivation of Ge for high mobility CMOS transistors, PhD. Thesis, Dept. Physics, ETH Zurich, Sweden, 2012
R.D. Long, P.C. McIntrye, Materials. 5, 1297 (2012)
Ş Altındal, H. Uslu, J. Appl. Phys. 109, 074503 (2011)
Ö Yüksek, M. Kuş, M. Yıldırım, J. Electron. Mater. 46, 882 (2017)
Y. Zeng, Tailored Al2O3/4H-SiC interface using implantation, M.S. Thesis, Dept. Integrated Circuits and Devices, KTH Royal Institute of Technology, School of Information and Communication Technology, Stockholm, Sweden, 2011
G.S. Ristić, M.M. Pejović, A.B. Jaksić, J. Non.-Cryst. Solids. 353, 170 (2007)
H.A.J. Lelis, H.E. BoeschJr, T.R. Oldham, F.B. Mclean, IEEE Trans. Nucl. Sci. 35, 1186 (1988)
A.J. Lelis, T.R. Oldham, H.E. BoeschJr, F.B. McLean, IEEE Trans. Nucl. Sci. 36, 1808 (1989)
W.A. Hill, C.C. Coleman, Solid State Electron. 23, 987 (1980)
S. Kaya, E. Yilmaz, J. Radioanal. Nucl. Chem. 302, 425 (2014)
C.C. Hu, (2009), Modern Semiconductor Devices for Integrated Circuits. https://people.eecs.berkeley.edu/~hu/Chenming-Hu_ch4.pdf. Accessed 25 June 2017
J.-P. Colinge, C.A. Colinge, Physics of Semiconductor Devices. (Springer, New York, 2005)
A. Tataroglu, Chin. Phys. B. 22, 068402 (2013)
C. Zhao, C.Z. Zhao, M. Werner, S. Taylor, P. Chalker, P. King, Nanoscale Res. Lett. 8:172, 1 (2013)
L. Zhang, M. Liu, W. Ren, Z. Zhou, G. Dong, Y. Zhang, B. Peng, X. Hao, C. Wang, Z.-D. Jiang, W. Jing, Z.-G. Ye, R. Soc. Chem. 7, 8388 (2017)
M. Zheng, G. Zhang, X. Wang, J. Wan, H. Wu, C. Liu, Nanoscale Res. 12(1), 267 (2017)
Acknowledgements
This work is supported by the Ministry of Development of Turkey under Contract Number: 2016K121110.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kahraman, A. Understanding of post deposition annealing and substrate temperature effects on structural and electrical properties of Gd2O3 MOS capacitor. J Mater Sci: Mater Electron 29, 7993–8001 (2018). https://doi.org/10.1007/s10854-018-8804-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-018-8804-y