Skip to main content
Log in

Optical and electrical properties of fluorine doped tin oxide thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin film of SnO2:F was prepared by spray pyrolysis technique on glass substrate. Surface Morphology, using scanning electron microscope, shows micrograph image with grains size distribution between 16 and 380 nm. Structural characterization by XRD indicates a similar rutile polycrystalline material as SnO2. A four point probe I–V measurement (Van der Pauw method) was used to study electrical properties and the result shows a room temperature sheet resistance of 24 Ω/sq. In addition, a temperature dependence of the electrical response indicates that defect scattering is the main contribution to the DC resistivity. Optical properties were studied by UV–Visible spectroscopy and the spectrum was fitted using Drude-Lorentz model with DC conductivity value (frequency equal to zero) as a fitting condition. Optical result shows average transmittance around 81.2% for the visible frequency range. It indicates a TCO figure of merit value of 5.2 × 10−3 Ω−1. In addition, a first principle calculation using DFT with PBE0 hybrid exchange-correlation was realized to SnO2 and SnO2:F systems in order to understand, from a theoretical point of view, the experimental results. Finally, the FTO film was utilized and evaluated as a transparent electrode in the preparation of a dye-sensitized solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Physical properties of sprayed antimony doped tin oxide thin films thickness: the role of thickness. J. Semicond. 32(5), 053001–053001 (2011)

    Article  Google Scholar 

  2. E. Ching-Prado, A. Watson, H. Miranda, I. Abrego, Optical properties of multilayers TiO2/SnO2:F thin films. MRS Adv. (Energy and Environment). 1(46), 3133 (2016)

    Article  Google Scholar 

  3. B. Zhang, J. Tian, J.X. Zhang, W. Cai, The studies on the role of fluorine in SnO2:F films prepared by spray pyrolysis with SnCl4. J. Optoelectron. Adv. Mater. 13(1), 89 (2011)

    Google Scholar 

  4. Z.Y. Banyamin, P.J. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4, 732 (2014)

    Article  Google Scholar 

  5. J.M. Rodríguez, A. Watson, I. Abrego, J. Ardisson, C.A. Samudio, E. Ching-Prado, A water vapor sensor application of Sn1xFexO2d. Mater. Res. Soc. Symp. Proc. (2015). https://doi.org/10.1557/opl.2015.788

    Google Scholar 

  6. A.A. Yadava, E.U. Masumdar, A.V. Moholkar, M. Neumann-Spallart, K.Y. Rajpure, C.H. Bhosale, Electrical, structural and optical properties of SnO2:F thin films: effect of the substrate temperature. J. Alloy. Compd. 488, 350 (2009)

    Article  Google Scholar 

  7. A. Agashe, S. Mahamuni, Competitive effects of film thickness and growth rate in spray pyrolytically deposited fluorine-doped tin dioxide films. Thin Solid Films 518, 4868–4873 (2010)

    Article  Google Scholar 

  8. K. Kaviyarasu, P.A. Devarajan, S.S.J. Xavier, S.A. Thomas, S. Selvakumar, One pot synthesis and characterization of cesium doped SnO2 nanocrystals via a hydrothermal process. J. Mater. Sci. Technol. 28(1), 15–20 (2012)

    Article  Google Scholar 

  9. M. Arularasu, M. Anbarasu, S. Poovaragan, R. Sundaram, K. Kanimozhi, C.M. Magdalane, K. Kaviyarasu, F. Thema, D. Letsholathebe, G.T. Mola, M. Maaza, Structural, optical, morphological and microbial studies on SnO2 nanoparticles prepared by co-precipitation method. J. Nanosci. Nanotechnol. 18(5), 3511–3517 (2018)

    Article  Google Scholar 

  10. J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. J. Alloy. Compd. 616, 614–617 (2014)

    Article  Google Scholar 

  11. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl. Surf. Sci. 367, 52–58 (2016)

    Article  Google Scholar 

  12. E. Sathyaseelan, K. Manikandan, J. Sivakumar, M. Kennedy, Maaza, Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application. J. Alloy. Compd. 651, 479–482 (2015)

    Article  Google Scholar 

  13. K. Kaviyarasu, C.M. Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, C.S. Sharma, F.T. Thema, E.S. Reddy, N.K. Rotte, D. Letsholathebe, G.T. Mola, M. Maaza, Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J. Photochem. Photobiol. B 173, 466–475 (2017)

    Article  Google Scholar 

  14. I. Chambouleyron, J.M. Martínez, in Optical Properties of Dielectric and Semiconductor, Chap. 12, ed. by H.S. Nalwa. Handbook of Thin Films Materials, vol. 3 (Academic Press, San Diego, 2001), pp. 1–30

    Google Scholar 

  15. M. Kadi, A. Smaali, R. Outemzabet, Analysis of optical and related properties of tin oxide thin films determined by Drude-Lorentz model. Surf. Coat. Technol. 211, 45 (2012)

    Article  Google Scholar 

  16. B.V. Odari, M. Mageto, R. Musembi, H. Othieno, F. Gaitho, V. Muramba, Optical and electrical properties of Pd doped Sno2 thin films deposited by spray pyrolysis. Aust. J. Basic Appl. Sci. 7(2), 89–98 (2013)

    Google Scholar 

  17. F.C. Lai, L.M. Lin, R.Q. Gai, Y.Z. Lin, Z.G. Huang, Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data. Thin Solid Films 515, 7387 (2007)

    Article  Google Scholar 

  18. J. Lin, Z.Q. Li, Electronic conduction properties of indium tin oxide: single-particle and many-body transport. J. Phys. 26, 343201–343201 (2014)

    Google Scholar 

  19. M.A. Al-Jalali, S.A. Mouhammad, Phonons Bloch-Gruneisen function and its applications to noble metals resistivity. Int. J. Pure Appl. Math. 102(2), 233 (2015)

    Article  Google Scholar 

  20. B.-T. Lin, Y.-F. Chen, J.-J. Lin, C.-Y. Wu, Temperature dependence of resistance and thermopower of thin indium tin oxide film. Thin Solid Films 518, 6997 (2010)

    Article  Google Scholar 

  21. H. Gao, T. Lin, X.D. Liu, X.H. Zhang, X.N. Li, J. Wu, Y.F. Liu, X.F. Wang, Y.W. Chen, B. Ni, N. Dai, J.H. Chu, Low temperature electrical transport properties of F-doped SnO2 films. Solid State Commun. 157, 49 (2013)

    Article  Google Scholar 

  22. G. Utlu, N. Artunc, The effects of grain boundary scattering on electrical resistivity of Ag/NiSi silicide films formed on silicon substrate at 500 °C by RTA. Appl. Surf. Sci. 310, 248 (2014)

    Article  Google Scholar 

  23. H. Cachet, in Films and Powders of Fluorine-Doped Tin Dioxide, 1st edn, ed. by T. Nakajima, H. Groult. Fluorinated Materials for Energy Conversion (Elsevier Science, Amsterdam, 2005), p. 520

    Google Scholar 

  24. Y. Dou, T. Fishlock, R.G. Egdell, Band-gap shrinkage in n-type-doped CdO probed by photoemission spectroscopy. Phys. Rev. B 55(20), R13381 (1997)

    Article  Google Scholar 

  25. A.B. Kuzmenko, Kramers Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 76(8), 083108 (2005)

    Article  Google Scholar 

  26. B. Kuzmenko, Guide to Reffit (2004). http://optics.unige.ch/alexey/reffit.html. Accessed 7 Jan 2016

  27. G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Progr. Nat. Sci. 25(1), 12 (2015)

    Article  Google Scholar 

  28. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Structural and optoelectronic properties of sprayed Sb:SnO2 thin films: effects of substrate temperature and nozzle-to-substrate distance. J. Semicond. 32(10), 102001–102001 (2011)

    Article  Google Scholar 

  29. F. El Akkad, T.A.P. Paulose, Optical transitions and point defects in F:SnO2 films: effect of annealing. Appl. Surf. Sci. 295, 8 (2014)

    Article  Google Scholar 

  30. E. Elangovan, K. Ramamurthi, Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor. Thin Solid Films 476, 231 (2005)

    Article  Google Scholar 

  31. W.Z. Samad, M.M. Salleh, A. Shafiee, M.A. Yarmo, Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique. Sains Malaysiana 40(3), 251 (2011)

    Google Scholar 

  32. T. Fukano, T. Motohiro, Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition. Sol. Energy Mater. Sol. Cells. 82, 567 (2004)

    Google Scholar 

  33. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J.Phys. 21(1), 395502 (2009)

    Google Scholar 

  34. J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982 (1996)

    Article  Google Scholar 

  35. M. Weidner, Fermi level determination in tin oxide by photoelectron spectroscopy, Thesis, Technischen Universität Darmstadt, Germany (2016)

Download references

Acknowledgements

This work was partially supported by Col-11-014 and Fid-05-061 SENACyT grants, Panama. Thanks to SmithSonian Tropical Research Institute, especially to Jorge Ceballos, for collaborate in SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ching-Prado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ching-Prado, E., Watson, A. & Miranda, H. Optical and electrical properties of fluorine doped tin oxide thin film. J Mater Sci: Mater Electron 29, 15299–15306 (2018). https://doi.org/10.1007/s10854-018-8795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8795-8

Navigation