Enhancement of electro-optic and structural properties of TGS single crystals on doping with l-glutamic acid

  • Preeti Singh
  • M. M. Abdullah
  • Suresh Sagadevan
  • Saiqa Ikram


Single crystals of pure and l-glutamic acid (LG) doped Triglycine Sulfate (TGS) crystals were grown by slow evaporation solution technique at ambient conditions. Effect of doping on various properties of the grown crystals was investigated. Powder X-ray diffraction (PXRD) studies confirmed the monoclinic system of crystal structure with lattice parameter a = ~ 9.28 Å, b = ~ 12.7 Å, and c = ~ 5.73 Å, and space group of P21. PXRD and Fourier-Transform Raman (FT-Raman) analysis confirmed that there is no new phase formation due to doping except a systematic variation in the intensity of the peaks in correlation with the morphology due to LG doping. The Raman bands obtained in the spectrum corresponds to NH3 vibrations, the stretching vibrations of COO, carboxyl vibrations, and vibrational modes of SO42−. Ultraviolet–Visible Spectroscopy (UV-Vis-NIR) analysis was carried out to see the changes in the optical transparency of pure TGS crystals due to LG doping. Optical band gaps (5.24 eV for PRTGS, and 5.07 eV for LGTGS) were calculated and found to decrease due to doping. The photoluminescence excitation and emission were studied. The thermal behavior of the grown crystal was investigated by Thermogravimetric analysis/Differential thermal analysis. Second harmonic generation (SHG) efficiency measurement showed the enhancement in the nonlinear optical characteristics of the as-grown pure and doped TGS single crystals. In the present study, the researchers found the good and comparable SHG efficiency with KDP in TGS crystals by LG doping for the first time. The surface morphology of the grown TGS single crystals was analyzed by using Scanning Electron Microscope. The mechanical studies showed the Mayer’s index (n) greater than 1.6 and thus predicting a soft-material nature of the as-grown crystals. The values of fracture toughness (Kc), brittleness indices (Bi), and yield strength (σ ν ) were estimated for the crystals. The dielectric constant and the dielectric loss decreased with an increase in the value of frequency. Hysteresis loop showed a negligible change in the doped TGS. The above studies reveal the effect of incorporation of LG into the lattice of TGS crystals.


  1. 1.
    J. van der Geer, J.A.J. Hanraads, R.A. Lupton, J. Sci. Commun. 163, 51–59 (2010)Google Scholar
  2. 2.
    G. Su, Y. He, H. Yao, Z. Shi, Q. Wu, J. Cryst. Growth 209, 220–222 (2000)CrossRefGoogle Scholar
  3. 3.
    G. Singh, P. Singh, S. Singh, Int. J. Res. Pract. Eng. Sci. 1, 110–113 (2012)Google Scholar
  4. 4.
    N. Sinha, N. Goel, B.K. Singh, M.K. Gupta, B. Kumar, J. Solid State Chem. 190, 180–185 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Montemmezzani, J. Fousek, P. Gunter, J. Stankoswka, Appl. Phys. Lett. 56, 2367 (1990)CrossRefGoogle Scholar
  6. 6.
    N.T. Shanthi, P. Selvarajan, C.K. Mahadevan, Indian J. Sci. Technol. 2, 49–52 (2009)Google Scholar
  7. 7.
    D. Jayalakhsmi, J. Kumar, J. Cryst. Growth 310, 1497–1500 (2008)CrossRefGoogle Scholar
  8. 8.
    N. Nakatani, T. Kikuta, T. Yamazaki, Ferroelectrics 368, 12–22 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Logeswari, Optoelectron. Adv. Mater. Rapid Commun. 2, 630–634 (2008)Google Scholar
  10. 10.
    R.S. Krishnan, K. Balasubramanian, Indian Inst. Sci. 48, 138–144 (1958)Google Scholar
  11. 11.
    E.M. Mihaylova, H.J. Byrne, J. Phys. Chem. Solid 61, 1919–1925 (2000)CrossRefGoogle Scholar
  12. 12.
    A.J.J. Manoharan, N.J. John, V. Revathi, K.V. Rajendran, P.M. Andavan, Indian J. Sci. Technol. 4, 688–691 (2011)Google Scholar
  13. 13.
    Z. Kecong, S. Jiancheng, W. Min, F. Changshui, L. Mengkai, J. Cryst. Growth 82, 639–642 (1987)CrossRefGoogle Scholar
  14. 14.
    P. Singh, M.M. Abdullah, S. Sagadevan, S. Ikram, J. Mater. Sci. 28, 6520–6528 (2017)Google Scholar
  15. 15.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)CrossRefGoogle Scholar
  16. 16.
    K. Balasubramanian, P. Selvarjun, E. Kumar, Indian J. Sci. Technol. 3, 41–43 (2010)Google Scholar
  17. 17.
    P. Singh, M.M. Abdullah, M. Shakir, M. Hasmuddin, M.A. Wahab, Int. J. Pure Appl. Phys. 8, 9–19 (2012)Google Scholar
  18. 18.
    A. Parameswari, M.K. Dhas, A.M.F. Benial, Int. J. Sci. Eng. Res. 5, 3Google Scholar
  19. 19.
    M. Hasmuddin, P. Singh, M. Shkir, M.M. Abdullah, N. Vijayan, G. Bhagavannarayana, M.A. Wahab, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 123, 376–384 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Gokul Raj, G.R. Kumar, R. Mohan, R. Jayavel, B. Varghese, Phys. Status Solid B 244, 558–568 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Suresh, D. Arivuoli, J. Miner. Mater. Charact. Eng. 10, 517–526 (2011)Google Scholar
  22. 22.
    F. Khanum, J. Podder, Int. J. Opt. (2012). Google Scholar
  23. 23.
    S. Suresh, Opt. Int. J. Light Electron Opt. 125, 1223–1226 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Suresh, Opt. Int. J. Light Electron Opt. 125, 950–953 (2014)CrossRefGoogle Scholar
  25. 25.
    T. Bharathasarathi, V.S. Shankar, R. Jayavel, P. Murugakoothan, J. Cryst. Growth 311, 1147–1151 (2009)CrossRefGoogle Scholar
  26. 26.
    F. Khanum, J. Podder, J. Crysatll. Process Technol. 1, 26–31 (2011)CrossRefGoogle Scholar
  27. 27.
    P. Singh, M. Hasmuddin, M.M. Abdullah, M. Shkir, M.A. Wahab, Mater. Res. Bull. 48, 3926–3933 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Chennakrishnan, S.M. Ravi Kumar, C. Shanthi, R. srineevasan, T. Kubendiran, D. Sivavishnu, M.P. Raj, J. Taibah Univ. Sci. 11, 955–965 (2017)CrossRefGoogle Scholar
  29. 29.
    P. Singh, M. Hasmuddin, M. Shakir, N. Vijayan, M.M. Abdullah, V. Ganesh, M.A. Wahab, Mater. Chem. Phys. 142, e154–e164 (2013)CrossRefGoogle Scholar
  30. 30.
    H.N. Das, J. Podder, J. Therm. Anal. Calorim. 110, 1107–1112 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Gunasekaran, P. Venkatesan, G. Anand, S. Kumaresan, Int. J. Chem. Technol. Res. 4, 1072–1076 (2012)Google Scholar
  32. 32.
    K. Srinivasan, P. Dhansekran, J. Cryst. Growth 318, 1080–1084 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Shakir, V. Ganesh, M.A. Wahab, G. Bhagvennarayana, K.K. Rao, Mater. Sci. Eng. B 172(9), 9–14 (2010)CrossRefGoogle Scholar
  34. 34.
    T. Bharthasarathi, O.P. Thakur, P. Murugakoothan, Physica B 405, 3943–3948 (2010)CrossRefGoogle Scholar
  35. 35.
    S. karan, S.S. Gupta, S.P.S. Gupta, Mater. Chem. Phys. 69, 143 (2001)CrossRefGoogle Scholar
  36. 36.
    E.M. Onitsch, Mikrosk 2, 131 (1947)Google Scholar
  37. 37.
    C. Hays, E.G. Kendall, Metallography 6, 275 (1973)CrossRefGoogle Scholar
  38. 38.
    V. Gupta, K.K. Bamzai, P.N. Kortu, B.M. Wankyln, Mater. Chem. Phys. 89, 64–71 (2005)CrossRefGoogle Scholar
  39. 39.
    C.B. Proton, R.D. Rawling, Br. Ceram. Trans. J. 88, 83–90 (1989)Google Scholar
  40. 40.
    K.K. Bamzi, P.N. Korthu, B.M. Wankyln, J. Mater. Sci. 4, 405–410 (2000)Google Scholar
  41. 41.
    J.P. Cahoon, W.H. Broughton, A.R. Katzuk, Metall. Trans. 2, 1979–1983 (1971)Google Scholar
  42. 42.
    K.C. Kwo, Dielectrics Phenomenon in Solids (Elsevier Academic press, London, 2004), p. 54Google Scholar
  43. 43.
    V.Y. Medvedev, T.A. Kuketaev, M.P. Tonronogov, Russ. Phys. J. 49, 1171–1180 (2006)CrossRefGoogle Scholar
  44. 44.
    S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Optoelectron. Adv. Mater. Rapid Commun. 4, 1763–1765 (2010)Google Scholar
  45. 45.
    V. Krishnakumar, M. Rajaboopathi, R. Nagalakshmi, Adv. Mater. Lett. 2, 163–169 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Preeti Singh
    • 1
  • M. M. Abdullah
    • 2
  • Suresh Sagadevan
    • 3
  • Saiqa Ikram
    • 1
  1. 1.Bio/Polymers Research Laboratory, Department of ChemistryJamia Millia IslamiaNew DelhiIndia
  2. 2.Promising Centre for Sensors and Electronic Devices (PCSED), Department of Physics, Faculty of Science and ArtsNajran UniversityNajranSaudi Arabia
  3. 3.Department of PhysicsAMET UniversityChennaiIndia

Personalised recommendations