Boosting the electrochemical capacitive properties of polypyrrole using carboxylated graphene oxide as a new dopant

  • Haihan Zhou
  • Hua-Jin Zhai


We report a new dopant, carboxylated graphene oxide (GO–COOH), to boost the electrochemical capacitive properties of polypyrrole (PPy). Herein, PPy/GO–COOH composite electrodes are fabricated via a facile one-pot electrochemical polymerization in aqueous dispersion containing pyrrole monomers and GO–COOH, in which GO–COOH is obtained from GO through treatment with carboxylation. Electrochemical measurements indicate that PPy/GO–COOH composite electrodes possess markedly enhanced electrochemical capacitive properties as compared to PPy/GO composite electrodes. It is because that the GO–COOH, all-round carboxyl-covered nanosheets with edged and basal oxygen-containing sites, provides more active sites for PPy heterogeneous nucleation. In contrast, the nanosheets of GO only use the edged carboxyl groups. The as-prepared PPy/GO–COOH composite electrodes exhibit electrochemical capacitive properties with a high areal specific capacitance of 170.9 mF cm−2 at 0.5 mA cm−2, superior rate capability, as well as cycling stability (retaining 96.9% of initial capacitance for 5000 cycles). This work is anticipated to stimulate further research interest for GO–COOH based composite electrodes in electrochemical energy storage applications.



This work was supported by the National Natural Science Foundation of China (21601113 and 21573138), the China Postdoctoral Science Foundation (2015M571283), the Natural Science Foundation of Shanxi Province (2015021079), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2017112), and the Sanjin Scholar Distinguished Professors Program.


  1. 1.
    E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi, A. Vioux, S.A. Freunberger, F. Favier, O. Fontaine, Nat. Mater. 16, 446–453 (2017)CrossRefGoogle Scholar
  2. 2.
    C.J. Chen, Y. Zhang, Y.J. Li, J.Q. Dai, J.W. Song, Y.G. Yao, Y.H. Gong, I. Kierzewski, J. Xie, L.B. Hu, Energy Environ. Sci. 10, 538–545 (2017)CrossRefGoogle Scholar
  3. 3.
    C. Choi, J.M. Lee, S.H. Kim, S.J. Kim, J.T. Di, R.H. Baughman, Nano Lett. 16, 7677–7684 (2016)CrossRefGoogle Scholar
  4. 4.
    J.W. Yuan, S.H. Tang, Z.T. Zhu, X.L. Qin, R.J. Qu, Y.X. Deng, L.S. Wu, J. Li, G.M. Haarberg, J. Mater. Sci. Mater. Electron. 28, 18022–18030 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Liu, C.J. Jiang, W. You, J.G. Yu, J. Mater. Chem. A. 5, 8635–8643 (2017)CrossRefGoogle Scholar
  6. 6.
    M.A. Maier, R.S. Babu, D.M. Sampaio, A.L.F. de Barros, J. Mater. Sci. Mater. Electron. 28, 17405–17413 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Yang, Q.Y. Huang, L.Y. Niu, D.R. Wang, C. Yan, Y.Y. She, Z.J. Zheng, Adv. Mater. 29, 1606679 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Huang, H.F. Li, Z.F. Wang, M.S. Zhu, Z.X. Pei, Q. Xue, Y. Huang, C.Y. Zhi, Nano Energy. 22, 422–438 (2016)CrossRefGoogle Scholar
  9. 9.
    X. Gao, H.Y. Yue, E.J. Guo, L.H. Yao, X.Y. Lin, B. Wang, E.H. Guan, D. Bychanok, J. Mater. Sci. Mater. Electron. 28, 17939–17947 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, W.H. Lai, N. Wang, Z. Jiang, X.Y. Wang, P.C. Zou, Z.Y. Lin, H.J. Fan, F.Y. Kang, C.P. Wong, C. Yang, Energy Environ. Sci. 10, 941–949 (2017)CrossRefGoogle Scholar
  11. 11.
    X.L. Su, L. Fu, M.Y. Cheng, J.H. Yang, X.X. Guan, X.C. Zheng, Appl. Surf. Sci. 426, 924–932 (2017)CrossRefGoogle Scholar
  12. 12.
    L.Y. Jiang, Y.W. Sui, J.Q. Qi, Y. Chang, Y.Z. He, Q.K. Meng, F.X. Wei, Z. Sun, Y.X. Jin, Appl. Surf. Sci. 426, 148–159 (2017)CrossRefGoogle Scholar
  13. 13.
    S.J. Im, Y.R. Park, S. Park, H.J. Kim, J.H. Doh, K. Kwon, W.G. Hong, B. Kim, W.S. Yang, T.Y. Kim, Y.J. Hong, Appl. Surf. Sci. 412, 160–169 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Liu, C.J. Jiang, B. Cheng, W. You, J.G. Yu, J. Power Sources. 359, 371–378 (2017)CrossRefGoogle Scholar
  15. 15.
    Z.S. Liu, D.H. Li, Z.S. Li, Z.H. Liu, Z.Y. Zhang, Appl. Surf. Sci. 422, 339–347 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Devi, A. Kumar, J. Appl. Polym. Sci. 135, 45883 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Zhu, L.R. Kong, X.P. Shen, Q.R. Chen, Z.Y. Ji, J.H. Wang, K.Q. Xu, G.X. Zhu, Appl. Surf. Sci. 428, 348–355 (2018)CrossRefGoogle Scholar
  18. 18.
    D.P. Dubal, N.R. Chodankar, Z. Caban-Huertas, F. Wolfart, M. Vidotti, R. Holze, C.D. Lokhande, P. Gomez-Romero, J. Power Sources. 308, 158–165 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Huang, M.S. Zhu, Z.X. Pei, Y. Huang, H.Y. Geng, C.Y. Zhi, ACS Appl. Mater. Interfaces. 8, 2435–2440 (2016)CrossRefGoogle Scholar
  20. 20.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources. 196, 1–12 (2011)CrossRefGoogle Scholar
  21. 21.
    J.S. Lee, D.H. Shin, W. Kim, J. Jang, J. Mater. Chem. A. 4, 6603–6609 (2016)CrossRefGoogle Scholar
  22. 22.
    X.Y. Fan, X.L. Wang, G. Li, A.P. Yu, Z.W. Chen, J. Power Sources. 326, 357–364 (2016)CrossRefGoogle Scholar
  23. 23.
    L.Y. Yuan, C.Y. Wan, X.R. Ye, F.H. Wu, Electrochim. Acta. 213, 115–123 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Jian, H.M. Yang, J.G. Li, E.H. Zhang, L.L. Cao, Z.H. Liang, Electrochim. Acta. 228, 483–493 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, S.B. Waje, M.A. Atieh, J. Power Sources. 352, 174–186 (2017)CrossRefGoogle Scholar
  26. 26.
    F.M. Guo, R.Q. Xu, X. Cui, L. Zhang, K.L. Wang, Y.W. Yao, J.Q. Wei, J. Mater. Chem. A. 4, 9311–9318 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Lehtimaki, M. Suominen, P. Damlin, S. Tuukkanen, C. Kvarnstrom, D. Lupo, ACS Appl. Mater. Interfaces. 7, 22137–22147 (2015)CrossRefGoogle Scholar
  28. 28.
    J.Y. Cao, Y.M. Wang, J.C. Chen, X.H. Li, F.C. Walsh, J.H. Ouyang, D.C. Jia, Y. Zhou, J. Mater. Chem. A. 3, 14445–14457 (2015)CrossRefGoogle Scholar
  29. 29.
    C.Z. Zhu, J.F. Zhai, D. Wen, S.J. Dong, J. Mater. Chem. 22, 6300–6306 (2012)CrossRefGoogle Scholar
  30. 30.
    L.Q. Fan, G.J. Liu, J.H. Wu, L. Liu, J.M. Lin, Y.L. Wei, Electrochim. Acta. 137, 26–33 (2014)CrossRefGoogle Scholar
  31. 31.
    I.M.D. Salas, Y.N. Sudhakar, M. Selvakumar, Appl. Surf. Sci. 296, 195–203 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Li, H.Q. Xie, Y. Li, J. Power Sources. 241, 388–395 (2013)CrossRefGoogle Scholar
  33. 33.
    K. Qi, Y.B. Qiu, X.P. Guo, Electrochim. Acta. 137, 685–692 (2014)CrossRefGoogle Scholar
  34. 34.
    H.H. Zhou, G.Y. Han, Y.M. Xiao, Y.Z. Chang, H.J. Zhai, J. Power Sources. 263, 259–267 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217–224 (2009)CrossRefGoogle Scholar
  36. 36.
    W.S. Hummers, R.E. Offeman, W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  37. 37.
    Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, J. Am. Chem. Soc. 130, 5856–5857 (2008)CrossRefGoogle Scholar
  38. 38.
    X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H.J. Dai, Nano Res. 1, 203–212 (2008)CrossRefGoogle Scholar
  39. 39.
    K. Zhang, N. Heo, X. Shi, J.H. Park, J. Phys. Chem. C. 117, 24023–24032 (2013)CrossRefGoogle Scholar
  40. 40.
    R. Imani, S.H. Emami, S. Faghihi, J. Nanopart. Res. 17, 88 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Bagherzadeh, Z.S. Ghahfarokhi, E.G. Yazdi, RSC Adv. 6, 22007–22015 (2016)CrossRefGoogle Scholar
  42. 42.
    C. Bora, S.K. Dolui, Polymer. 53, 923–932 (2012)CrossRefGoogle Scholar
  43. 43.
    N. Pan, D.B. Guan, Y.T. Yang, Z.L. Huang, R.B. Wang, Y.D. Jin, C.Q. Xia, Chem. Eng. J. 236, 471–479 (2014)CrossRefGoogle Scholar
  44. 44.
    C.X. Wang, G.J. Shao, Z.P. Ma, S. Liu, W. Song, J.J. Song, Electrochim. Acta. 130, 679–688 (2014)CrossRefGoogle Scholar
  45. 45.
    Y. Shi, L.J. Pan, B.R. Liu, Y.Q. Wang, Y. Cui, Z.A. Bao, G.H. Yu, J. Mater. Chem. A. 2, 6086–6091 (2014)CrossRefGoogle Scholar
  46. 46.
    A. Singh, A. Chandra, J. Appl. Electrochem. 43, 773–782 (2013)CrossRefGoogle Scholar
  47. 47.
    H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, ACS Nano. 3, 2653–2659 (2009)CrossRefGoogle Scholar
  48. 48.
    Y. Liu, H.H. Wang, J. Zhou, L.Y. Bian, E.W. Zhu, J.F. Hai, J. Tang, W.H. Tang, Electrochim. Acta. 112, 44–52 (2013)CrossRefGoogle Scholar
  49. 49.
    H. Zhou, T. Ni, X.T. Qing, X.X. Yue, G. Li, Y. Lu, RSC Adv. 4, 4134–4139 (2014)CrossRefGoogle Scholar
  50. 50.
    H.G. Wei, J.H. Zhu, S.J. Wu, S.Y. Wei, Z.H. Guo, Polymer. 54, 1820–1831 (2013)CrossRefGoogle Scholar
  51. 51.
    J.F. Sun, Y. Huang, C.X. Fu, Y. Huang, M.S. Zhu, X.M. Tao, C.Y. Zhi, H. Hu, J. Mater. Chem. A. 4, 14877–14883 (2016)CrossRefGoogle Scholar
  52. 52.
    Z.S. Wu, K. Parvez, S. Li, S. Yang, Z.Y. Liu, S.H. Liu, X.L. Feng, K. Muellen, Adv. Mater. 27, 4054–4061 (2015)CrossRefGoogle Scholar
  53. 53.
    H.H. Zhou, G.Y. Han, Y.M. Xiao, Y.Z. Chang, H.J. Zhai, Synth. Met. 209, 405–411 (2015)CrossRefGoogle Scholar
  54. 54.
    M. Yang, S.B. Hong, J.H. Yoon, D.S. Kim, S.W. Jeong, D.E. Yoo, T.J. Lee, K.G. Lee, S.J. Lee, B.G. Choi, ACS Appl. Mater. Interfaces. 8, 22220–22226 (2016)CrossRefGoogle Scholar
  55. 55.
    Q.Q. Zhou, Y.R. Li, L. Huang, C. Li, G.Q. Shi, J. Mater. Chem. A. 2, 17489–17494 (2014)CrossRefGoogle Scholar
  56. 56.
    M. Szkoda, K. Trzcinski, J. Rysz, M. Gazda, K. Siuzdak, A. Lisowska-Oleksiak, Solid State Ionics. 302, 197–201 (2017)CrossRefGoogle Scholar
  57. 57.
    X.L. Mao, W.Y. Yang, X. He, Y. Chen, Y.T. Zhao, Y.J. Zhou, Y.J. Yang, J.H. Xu, Mater. Sci. Eng. B. 216, 16–22 (2017)CrossRefGoogle Scholar
  58. 58.
    C. Peng, J. Jin, G.Z. Chen, Electrochim. Acta. 53, 525–537 (2007)CrossRefGoogle Scholar
  59. 59.
    Y.R. Wang, H.G. Wei, J.M. Wang, J.R. Liu, J. Guo, X. Zhang, B.L. Weeks, T.D. Shen, S.Y. Wei, Z.H. Guo, J. Mater. Chem. A. 3, 20778–20790 (2015)CrossRefGoogle Scholar
  60. 60.
    Y.F. Xu, I. Hennig, D. Freyberg, A.J. Strudwick, M.G. Schwab, T. Weitz, K.C.P. Cha, J. Power Sources. 248, 483–488 (2014)CrossRefGoogle Scholar
  61. 61.
    H.H. Zhou, G.Y. Han, Electrochim. Acta. 192, 448–455 (2016)CrossRefGoogle Scholar
  62. 62.
    H.G. Wei, Y.R. Wang, J. Guo, X.R. Yan, R. O’Connor, X. Zhang, N.Z. Shen, B.L. Weeks, X.H. Huang, S.Y. Wei, Z.H. Guo, Chemelectrochem. 2, 119–126 (2015)CrossRefGoogle Scholar
  63. 63.
    H.H. Zhou, G.Y. Han, D.Y. Fu, Y.Z. Chang, Y.M. Xiao, H.J. Zhai, J. Power Sources. 272, 203–210 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education MinistryShanxi UniversityTaiyuanChina

Personalised recommendations