Electrochemical analysis of graphene/Mo9Se11 nanocomposites towards energy storage application

  • V. Balasubramanian
  • J. Celina Selvakumari
  • J. Dhanalakshmi
  • M. Ahila
  • D. Pathinettam Padiyan


This paper essentially analyses graphene/Mo9Se11 nanocomposites routes to supercapacitor applications which is one of the prominent devices for high power storage. Graphene and Mo9Se11 are coupled together by attrition followed by ultrasonification. The reduction of graphene oxide to graphene as well as the coupling of graphene with Mo9Se11 and the formation of their nanocomposites is confirmed through X-ray diffraction pattern, FTIR spectra and Raman spectra analysis of these materials. The surface morphology of the entire samples is imaged through SEM while their electrochemical performances are analysed by cyclic voltametry and electrochemical impedance spectroscopy. The nanocomposite, having three parts of Mo9Se11 and one part of graphene, displayed the higher areal capacitance of 438 mF at a scan rate of 5 mV s−1. Finally, the solution resistance and charge transfer resistance are obtained from EIS measurements and reported.



We acknowledge Sophisticated Test and Instrumentation Centre, SAIF, CUSAT for SEM measurements and Noorul Islam University for Raman spectra recording.


  1. 1.
    L. Hao, X. Li, L. Zhi, Adv. Mater. 25, 3899 (2013)CrossRefGoogle Scholar
  2. 2.
    A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, Adv. Mater. 24, 5045 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Selvam, B. Balamuralitharan, S.N. Karthick, A.D. Savariraj, K.V. Hemalatha, S.-K. Kim, H.-J. Kim, J. Mater. Chem. A 3, 10225 (2015)CrossRefGoogle Scholar
  4. 4.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  6. 6.
    Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 1, 107–131 (2012)CrossRefGoogle Scholar
  7. 7.
    E. Frackowiak, Phys. Chem. Chem. Phys. 9, 1774 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Chem. Soc. Rev. 44, 3639 (2015)CrossRefGoogle Scholar
  9. 9.
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, H. Zhang, C. Li, K. Wang, X. Sun, Y. Ma, RSC Adv. 4, 45862 (2014)CrossRefGoogle Scholar
  11. 11.
    O. Barbieri, M. Hahn, A. Herzog, R. Kotz, Carbon. 43, 1303 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Chem. Rev. 115, 11941 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Pumera, Z. Sofer, A. Ambrosi, J. Mater. Chem. A 2, 8981 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Hguyen, R.S. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  16. 16.
    G. Xiong, P. He, L. Liu, T. Chen, T.S. Fisher, J. Mater. Chem. A 3, 22940 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5, 72 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Luo, J. Zhou, L. Wang, G. Fang, A. Pan, S. Liang, J. Mater. Chem. A 4, 15302–15308 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Ma, L. Xu, X. Zhou, X. Xu, L. Zhang, RSC Adv. 6, 91621–91628 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, H.-B.-R. Lee, B.H. Kim, Y. Jun, Sci. Rep. 5, 8151 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Ramadoss, S.J. Kim, Carbon 63, 434 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Muthukannan, J. Henry, K. Mohanraj, G. Sivakumar, S. Thanikaiarasan, J. Mater. Sci.: Mater. Electron. 27, 9947–9952 (2016)Google Scholar
  23. 23.
    C.K. Chua, M. Pumera, J. Mater. Chem. 22, 23227 (2012)CrossRefGoogle Scholar
  24. 24.
    M.T.H. Aunkor, I.M. Mahbukul, R. Saidur, H.S.C. Metselaar, RSC Adv. 5, 70461 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Shi, C. Hua, B. Li, X. Fang, C. Yao, Y. Zhang, Y.-S. Hu, Z. Wang, L. Chen, D. Zhao, G.D. Stucky, Adv. Funct. Mater. 23, 1832 (2013)CrossRefGoogle Scholar
  26. 26.
    M.A. Bissett, I.A. Kinloch, R.A.W. Dryfe, ACS Appl. Mater. Interfaces 7, 17388 (2015)CrossRefGoogle Scholar
  27. 27.
    Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Phys. Chem. Chem. Phys. 13, 17615 (2011)CrossRefGoogle Scholar
  28. 28.
    Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Carbon 49, 2917 (2011)CrossRefGoogle Scholar
  29. 29.
    S.K. Balasingam, A. Thirumurugan, J.S. Lee, Y. Jun, Nanoscale (2016). Google Scholar
  30. 30.
    J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 48, 3825 (2010)CrossRefGoogle Scholar
  31. 31.
    W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu, M. Zhao, ChemSusChem 8, 2114 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. Balasubramanian
    • 1
  • J. Celina Selvakumari
    • 1
  • J. Dhanalakshmi
    • 1
  • M. Ahila
    • 1
  • D. Pathinettam Padiyan
    • 1
  1. 1.Department of PhysicsManonmaniam Sundaranar UniversityTirunelveliIndia

Personalised recommendations