Advertisement

Optimized preparation of core–shell composites based on polypyrrole doped with carbon nanotubes for high performance electrochemical capacitors

  • Haihan Zhou
Article

Abstract

Polypyrrole/carbon nanotubes (PPy/CNTs) core–shell composite electrodes have been prepared by facile electrochemical co-deposition. A detailed study regarding the effects of different preparation conditions including electrodeposition mode, parameter, current collector, and carboxylation degree of CNTs on the supercapacitive performances of PPy/CNTs electrodes is carried out. Electrochemical tests suggest a significant effect of current collector on supercapacitive properties of the obtained PPy/CNTs electrodes. Graphite foil as the current collector with low resistance shows remarkably superior capacitive performances relative to FTO conducting glass and ITO conductive plastic. SEM characterizations show galvanostatically deposited PPy/CNTs have a favorable three-dimensional porous nano-network microstructure, while potentiostatically deposited PPy/CNTs present a compact two-dimensional morphology. Furthermore, the CNTs with higher carboxylation degree introduce more PPy, thereby resulting in better electrochemical performances. The optimized PPy/CNTs composite electrodes show a high specific capacitance of 185.3 mF cm−2 at 0.5 mA cm−2, superior rate capability, and outstanding cycling stability (retaining 88.5% of initial capacitance for 10,000 cycles). These results provide a useful orientation to optimize the electrochemical properties of PPy/CNTs core–shell composites applied as electrode material for high performance supercapacitors.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21601113), Natural Science Foundation of Shanxi Province (2015021079), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2017112), and China Postdoctoral Science Foundation (2015M571283).

References

  1. 1.
    J. Xu, Z.Q. Tan, W.C. Zeng, G.X. Chen, S.L. Wu, Y. Zhao, K. Ni, Z.C. Tao, M. Ikram, H.X. Ji, Y.W. Zhu, Adv. Mater. 28, 5222–5228 (2016)CrossRefGoogle Scholar
  2. 2.
    A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, J. Am. Chem. Soc. 138, 5731–5744 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Yun, Y. Lim, H. Lee, G. Lee, H. Park, S.Y. Hong, S.W. Jin, Y.H. Lee, S.S. Lee, J.S. Ha, Adv. Funct. Mater. 27, 1700135 (2017)CrossRefGoogle Scholar
  4. 4.
    W.G. Li, X.B. Xu, C. Liu, M.C. Tekell, J. Ning, J.H. Guo, J.C. Zhang, D.L. Fan, Adv. Funct. Mater. 27, 1702738 (2017)CrossRefGoogle Scholar
  5. 5.
    N. Jabeen, A. Hussain, Q.Y. Xia, S. Sun, J.W. Zhu, H. Xia, Adv. Mater. 29, 1700804 (2017)CrossRefGoogle Scholar
  6. 6.
    Y.L. Wang, X.Q. Wei, N. Guo, X.L. Deng, X.J. Xu, J. Mater. Sci.: Mater. Electron. 28, 1223–1228 (2017)Google Scholar
  7. 7.
    W. Xia, C. Qu, Z.B. Liang, B.T. Zhao, S.G. Dai, B. Qiu, Y. Jiao, Q.B. Zhang, X.Y. Huang, W.H. Guo, D. Dang, R.Q. Zou, D.G. Xia, Q. Xu, M.L. Liu, Nano Lett. 17, 2788–2795 (2017)CrossRefGoogle Scholar
  8. 8.
    W.W. Li, F.X. Gao, X.Q. Wang, N. Zhang, M.M. Ma, Angew. Chem. Int. Ed. 55, 9196–9201 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Li, H.J. Wu, Y. Wu, Q. Li, J Mater Sci. Mater. Electron. 28, 16826–16835 (2017)CrossRefGoogle Scholar
  10. 10.
    P. Asen, S. Shahrokhian, J. Phys. Chem. C 121, 6508–6519 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Chen, L. Chen, Q. Ai, D. Li, P. Si, J. Feng, L. Zhang, Y. Li, J. Lou, L. Ci, Chem. Eng. J. 334, 184–190 (2018)CrossRefGoogle Scholar
  12. 12.
    H.R. Naderi, P. Norouzi, M.R. Ganjali, H. Gholipour‑Ranjbar, J. Mater. Sci.: Mater. Electron. 28, 14504–14514 (2017)Google Scholar
  13. 13.
    Z.C. Li, Y.Q. Xin, H.L. Jia, Z.X. Wang, J.H. Sun, Q.F. Zhou, J. Mater. Sci. 52, 9661–9672 (2017)CrossRefGoogle Scholar
  14. 14.
    W. Liu, Y.K. Tang, Z.P. Sun, S.S. Gao, J.H. Ma, L. Liu, Carbon 115, 754–762 (2017)CrossRefGoogle Scholar
  15. 15.
    Q. Yang, S.K. Pang, K.C. Yung, J. Power Sources 311, 144–152 (2016)CrossRefGoogle Scholar
  16. 16.
    P.M. Kharade, J.V. Thombare, S.L. Kadam, S.B. Kulkarni, D.J. Salunkhe, J. Mater. Sci.: Mater. Electron. 28, 17908–17916 (2017)Google Scholar
  17. 17.
    P.M. Kharade, S.M. Mane, S.B. Kulkarni, P.B. Joshi, D.J. Salunkhe, J. Mater. Sci.: Mater. Electron. 27, 3499–3505 (2016)Google Scholar
  18. 18.
    B.F. Zhang, P.F. Zhou, Y.L. Xu, J. Lin, H. Li, Y. Bai, J.B. Zhu, S.C. Mao, J. Wang, Chem. Eng. J. 330, 1060–1067 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Liu, C.H. An, X.Y. Chang, H.N. Guo, L. Zang, Y.J. Wang, H.T. Yuan, L.F. Jiao, J. Mater. Sci. 53, 2658–2668 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Asen, S. Shahrokhian, A.I. Zad, Int. J. Hydrog. Energy 42, 21073–21085 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Wang, Y.H. Song, J.K. Zhou, X.Y. Xu, W. Hong, J. Yan, R.N. Xue, H.L. Zhao, Y. Liu, J.P. Gao, Electrochim. Acta 212, 775–783 (2016)CrossRefGoogle Scholar
  22. 22.
    S.Q. Huang, P.S. Chen, W.Z. Lin, S.W. Lyu, G.D. Chen, X.Y. Yin, W.X. Chen, RSC Adv. 6, 13359–13364 (2016)CrossRefGoogle Scholar
  23. 23.
    L.F. Yang, Z. Shi, W.H. Yang, Electrochim. Acta 153, 76–82 (2015)CrossRefGoogle Scholar
  24. 24.
    R.Q. Xu, J.Q. Wei, F.M. Guo, X. Cui, T.Y. Zhang, H.W. Zhu, K.L. Wang, D.H. Wu, RSC Adv. 5, 22015–22021 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Li, I. Zhitomirsky, J. Power Sources 221, 49–56 (2013)CrossRefGoogle Scholar
  26. 26.
    X.J. Lu, H. Dou, C.Z. Yuan, S.D. Yang, L. Hao, F. Zhang, L.F. Shen, L.J. Zhang, X.G. Zhang, J. Power Sources 197, 319–324 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Lee, H. Kim, M.S. Cho, J. Choi, Y. Lee, Electrochim. Acta 56, 7460–7466 (2011)CrossRefGoogle Scholar
  28. 28.
    C.Y. Xiong, T.H. Li, A.L. Dang, T.K. Zhao, H. Li, H.Q. Lv, J. Power Sources 306, 602–610 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Hassan, K.R. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A.I. Minett, V.G. Gomes, Compos. Sci. Technol. 98, 1–8 (2014)CrossRefGoogle Scholar
  30. 30.
    P.M. Kharadea, S.G. Chavana, S.S. Manea, P.B. Joshia, D.J. Salunkhe, J. Chin. Adv. Mater. Soc. 4, 1–12 (2016)CrossRefGoogle Scholar
  31. 31.
    S.L. Chou, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, Electrochem. Commun. 10, 1724–1727 (2008)CrossRefGoogle Scholar
  32. 32.
    F. Gao, B.Y. Xu, Q.H. Wang, F.X. Cai, S.Y. He, M.S. Zhang, Q.X. Wang, J. Mater. Sci. 51, 10641–10651 (2016)CrossRefGoogle Scholar
  33. 33.
    P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortiere, B. Daffos, P.L. Taberna, B. Chaudret, Y. Gogotsi, P. Simon, Science 351, 691–695 (2016)CrossRefGoogle Scholar
  34. 34.
    H.H. Zhou, G.Y. Han, D.Y. Fu, Y.Z. Chang, Y.M. Xiao, H.J. Zhai, J. Power Sources 272, 203–210 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Yan, Y. Huang, C. Wei, N. Zhang, P.B. Liu, Compos. A 99, 121–128 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Bhandari, M. Deepa, A.K. Srivastava, A.G. Joshi, R. Kant, J. Phys. Chem. B 113, 9416–9428 (2009)CrossRefGoogle Scholar
  37. 37.
    J.G. Wang, B.Q. Wei, F.Y. Kang, RSC Adv. 4, 199–202 (2014)CrossRefGoogle Scholar
  38. 38.
    S.S. Jeon, C. Kim, J. Ko, S.S. Im, J. Mater. Chem. 21, 8146–8151 (2011)CrossRefGoogle Scholar
  39. 39.
    D. Zhang, Q.Q. Dong, X. Wang, W. Yan, W. Deng, L.Y. Shi, J. Phys. Chem. C 117, 20446–20455 (2013)CrossRefGoogle Scholar
  40. 40.
    R.R. Salunkhe, J.J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Nano Energy 11, 211–218 (2015)CrossRefGoogle Scholar
  41. 41.
    D.H. Guan, Z. Gao, W.L. Yang, J. Wang, Y. Yuan, B. Wang, M.L. Zhang, L.H. Liu, Mater. Sci. Eng. B 178, 736–743 (2013)CrossRefGoogle Scholar
  42. 42.
    M. Ghasemi, W.R.W. Daud, S.H.A. Hassan, T. Jafary, M. Rahimnejad, A. Ahmad, M.H. Yazdi, Int. J. Hydrog. Energy 41, 4872–4878 (2016)CrossRefGoogle Scholar
  43. 43.
    G.W. Lee, J. Kim, J. Yoon, J.S. Bae, B.C. Shin, I.S. Kim, W. Oh, M. Ree, Thin Solid Films 516, 5781–5784 (2008)CrossRefGoogle Scholar
  44. 44.
    T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon 43, 153–161 (2005)CrossRefGoogle Scholar
  45. 45.
    M. Yang, S.B. Hong, J.H. Yoon, D.S. Kim, S.W. Jeong, D.E. Yoo, T.J. Lee, K.G. Lee, S.J. Lee, B.G. Choi, ACS Appl. Mater. Interfaces 8, 22220–22226 (2016)CrossRefGoogle Scholar
  46. 46.
    C. Wang, Y. Zhan, L.X. Wu, Y.Y. Li, J.P. Liu, Nanotechnology 25, 305401 (2014)CrossRefGoogle Scholar
  47. 47.
    M. Jin, Y.Y. Liu, Y.L. Li, Y.Z. Chang, D.Y. Fu, H. Zhao, G.Y. Han, J. Appl. Polym. Sci. 122, 3415–3422 (2011)CrossRefGoogle Scholar
  48. 48.
    R.P. Raj, P. Ragupathy, S. Mohan, J. Mater. Chem. A 3, 24338–24348 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Wu, Z. Lou, H. Yang, G.Z. Shen, Nanoscale 7, 1921–1926 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education MinistryShanxi UniversityTaiyuanChina

Personalised recommendations