Phase structure and electrical properties of lead-free (1 − 2x)NBT–xKBT–xBT ceramics

  • Yang Li
  • Yong Zhang
  • Huajun Sun
  • Xiaofang Liu
  • Huiting Sui
  • Dingguo Zhou
  • Qinghu Guo


The research on Na0.5Bi0.5TiO3 based lead-free piezoelectric ceramics attracted widely attention during last decades. However, the electrical performance is still much inferior to that of lead-based counterparts, which limits its practical applications. Based on this situation, a ternary system of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 [(1 − 2x)NBT–xKBT–xBT] is constructed in this work, hoping to further improve its piezoelectric response. The ceramics were fabricated by the traditional solid state reaction approach, and their structure and electrical performance were studied systematically. Excellent piezoelectric properties with d33 = 146 and kp = 26.5% were obtained at x = 0.08, which was supposed to be related with the coexistence of tetragonal and rhombohedral phases and appropriate grain size. Besides these, a relatively high dielectric constant (εr = 2250), a high remnant polarization (Pr = 31.5 µC/cm2) and low coercive field (Ec = 1.54 kV/mm) were also obtained at this composition. This work provides a new paradigm for the further optimization of NBT–KBT–BT based lead-free piezoelectric ceramics.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 50802066, 51072145, 51272191, 51372181, 51402005, 51672198), Innovative Public Service Platform Special Plan of Shandong (Grant No. 2014CXPT002), Primary Research Plan of Shandong Province (Grant No. 2016CYJS07A03-2), Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2016-181-11, 2017-41-1, 2017-41-3), and Central Guiding Local Science and Technology Development Special Funds (Grant No. 2060503).


  1. 1.
    S.K. Acharya, S.-K. Lee, J.-H. Hyung, Y.-H. Yang, B.-H. Kim, B.-G. Ahn, Ferroelectric and piezoelectric properties of lead-free BaTiO3 doped Bi0.5Na0.5TiO3 thin films from metal-organic solution deposition. J. Alloys Compd. 540, 204–209 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, W. Zhu, C.K. Jeong, H. Sun, G. Yang, W. Chen, Q. Wang, A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 7, 32502–32507 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, H. Sun, W. Chen, A brief review of Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives. J. Phys. Chem. Solids 114, 207–219 (2018)CrossRefGoogle Scholar
  4. 4.
    C.K. Jeong, S.B. Cho, J.H. Han, D.Y. Park, S. Yang, K.-I. Park, J. Ryu, H. Sohn, Y.C. Chung, K.J. Lee, Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017)CrossRefGoogle Scholar
  5. 5.
    G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek, D.Y. Park, D.H. Kim, J.H. Park, C.K. Jeong, K.-I. Park, J.J. Choi, D.K. Kim, J. Ryu, K.J. Lee, Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016)CrossRefGoogle Scholar
  6. 6.
    D.H. Kim, H.J. Shin, H. Lee, C.K. Jeong, H. Park, G.-T. Hwang, H.-Y. Lee, D.J. Joe, J.H. Han, S.H. Lee, J. Kim, B. Joung, K.J. Lee, In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater. 27, 1700341 (2017)CrossRefGoogle Scholar
  7. 7.
    K.-I. Park, C.K. Jeong, N.K. Kim, K.J. Lee, Stretchable piezoelectric nanocomposite generator. Nano Converg. 3, 12 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Sun, Y. Zhang, X. Liu, Y. Liu, S. Guo, W. Chen, Effects of cobalt and sintering temperature on electrical properties of Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics. J. Mater. Sci.: Mater. Electron. 25, 3962–3966 (2014)Google Scholar
  9. 9.
    T.R. Shrout, S. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Zhang, N. Kim, T.R. Shrout, M. Kimura, A. Ando, High temperature properties of manganese modified CaBi4Ti4O15 ferroelectric ceramics. Solid State Commun. 140, 154–158 (2006)CrossRefGoogle Scholar
  11. 11.
    Z.-G. Gai, J.-F. Wang, M.-L. Zhao, C.-M. Wang, G.-Z. Zang, B.-Q. Ming, P. Qi, S. Zhang, T.R. Shrout, High temperature (NaBi)(0.48)square 0.04Bi2Nb2O9-based piezoelectric ceramics. Appl. Phys. Lett. 89, 012907 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Baek, J.H. Yun, J.E. Wang, C.K. Jeong, K.J. Lee, K.-I. Park, D.K. Kim, A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle–polymer composite. Nanoscale 8, 17632–17638 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, H.J. Sun, W. Chen, Y. Li, Modification of the structure and electrical properties of Ba0.95Ca0.05Zr0.1Ti0.9O3 ceramics by the doping of Mn ions. J. Mater. Sci.: Mater. Electron. 26, 10034–10043 (2015)Google Scholar
  14. 14.
    Y. Zhang, H.-J. Sun, W. Chen, Li-modified Ba0.99Ca0.01Zr0.02Ti0.98O3 lead-free ceramics with highly improved piezoelectricity. J. Alloys Compd. 694, 745–751 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, H. Sun, W. Chen, Improved electrical properties of low-temperature sintered Cu doped Ba0.99Ca0.01Zr0.02Ti0.98O3 ceramics. J. Electron. Mater. 45, 5006–5016 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Sun, Y. Zhang, X. Liu, Y. Liu, W. Chen, Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics. Ceram. Int. 41, 555–565 (2015)CrossRefGoogle Scholar
  17. 17.
    M.B. Ghasemian, Q. Lin, E. Adabifiroozjaei, F. Wang, D. Chu, D. Wang, Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Adv. 7, 15020–15026 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, T. Takenaka, Piezoelectric properties in (K0.5Bi0.5)TiO3-(Na0.5Bi0.5)TiO3-BaTiO3 lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 910–917 (2007)CrossRefGoogle Scholar
  19. 19.
    H.J. Lee, S.O. Ural, L. Chen, K. Uchino, S. Zhang, High power characteristics of lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 3383–3386 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)CrossRefGoogle Scholar
  21. 21.
    J.-F. Li, K. Wang, B.-P. Zhang, L.-M. Zhang, Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 706–709 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Wu, D. Xiao, Y. Wang, J. Zhu, L. Wu, Y. Jiang, Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96–xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl. Phys. Lett. 91, 252907 (2007)CrossRefGoogle Scholar
  23. 23.
    C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.-T. Hwang, B. Joung, S.-G. Kim, H.J. Shin, I.-S. Kang, J. Ryu, K.J. Lee, Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5, 074102 (2017)CrossRefGoogle Scholar
  24. 24.
    J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Takenaka, K.-I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRefGoogle Scholar
  26. 26.
    A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564–5567 (1999)CrossRefGoogle Scholar
  27. 27.
    Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics. Mater. Lett. 59, 1361–1364 (2005)CrossRefGoogle Scholar
  28. 28.
    Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, S. Fang, Electromechanical and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 lead-free ceramics. Mater. Chem. Phys. 94, 328–332 (2005)CrossRefGoogle Scholar
  29. 29.
    W. Chen, Y. Li, Q. Xu, J. Zhou, Electromechanical properties and morphotropic phase boundary of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3 lead-free piezoelectric ceramics. J. Electroceram. 15, 229–235 (2005)CrossRefGoogle Scholar
  30. 30.
    P. Marchet, E. Boucher, V. Dorcet, J. Mercurio, Dielectric properties of some low-lead or lead-free perovskite-derived materials: Na0.5Bi0.5TiO3–PbZrO3, Na0.5Bi0.5TiO3–BiScO3 and Na0.5Bi0.5TiO3–BiFeO3 ceramics. J. Eur. Ceram. Soc. 26, 3037–3041 (2006)CrossRefGoogle Scholar
  31. 31.
    L. Luo, X. Jiang, Y. Zhang, K. Li, Electrocaloric effect and pyroelectric energy harvesting of (0.94 – x)Na0.5Bi0.5TiO3-0.06BaTiO3-xSrTiO3 ceramics. J. Eur. Ceram. Soc. 37, 2803–2812 (2017)CrossRefGoogle Scholar
  32. 32.
    H. Yu, Z.-G. Ye, Dielectric, ferroelectric, and piezoelectric properties of the lead-free (1 – x)(Na0.5Bi0.5)TiO3-xBiAlO3 solid solution. Appl. Phys. Lett. 93, 112902 (2008)CrossRefGoogle Scholar
  33. 33.
    Q. Xu, X. Chen, W. Chen, S. Chen, B. Kim, J. Lee, Synthesis, ferroelectric and piezoelectric properties of some (Na0.5Bi0.5)TiO3 system compositions. Mater. Lett. 59, 2437–2441 (2005)CrossRefGoogle Scholar
  34. 34.
    M. Saleem, I.-S. Kim, M.-S. Kim, S.A. Pervez, U. Farooq, M.Z. Khan, A. Yaqoob, S.-J. Jeong, Electromechanical properties of Nb doped 0.76Bi0.5Na0.5TiO3–0.24SrTiO3 ceramic. RSC Adv. 6, 89210–89220 (2016)CrossRefGoogle Scholar
  35. 35.
    E.V. Ramana, S.V. Suryanarayana, T.B. Sankaram, Synthesis and magnetoelectric studies on Na0.5Bi0.5TiO3–BiFeO3 solid solution ceramics. Solid State Sci. 12, 956–962 (2010)CrossRefGoogle Scholar
  36. 36.
    W.L. Li, W.P. Cao, D. Xu, W. Wang, W.D. Fei, Phase structure and piezoelectric properties of NBT–KBT–BT ceramics prepared by sol–gel flame synthetic approach. J. Alloys Compd. 613, 181–186 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Hiruma, H. Nagata, T. Takenaka, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J. Appl. Phys. 104, 124106 (2008)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, H. Sun, W. Chen, Influence of cobalt and sintering temperature on structure and electrical properties of BaZr0.05Ti0.95O3 ceramics. Ceram. Int. 41, 8520–8532 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yang Li
    • 1
  • Yong Zhang
    • 1
  • Huajun Sun
    • 1
    • 2
  • Xiaofang Liu
    • 3
  • Huiting Sui
    • 2
  • Dingguo Zhou
    • 1
  • Qinghu Guo
    • 1
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development ZoneZiboPeople’s Republic of China
  3. 3.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations