Polymer solar cells with reduced graphene oxide–germanium quantum dots nanocomposite in the hole transport layer

  • Tabitha A. Amollo
  • Genene T. Mola
  • Vincent O. Nyamori


Reduced graphene oxide–germanium quantum dots (rGO–Ge QDs) nanocomposite has been successfully employed in modifying poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole transport layer (HTL) in the preparation of a P3HT:PCBM-based polymer solar cell (PSC). The effect of the surface morphology and the optical transmittance of the PEDOT:PSS/rGO–Ge QDs HTL on the devices’ photovoltaic performance is examined. A significant improvement of up to 50% in the power conversion efficiency is achieved by the incorporation of the composite in the HTL. The modified HTL devices exhibited higher short-circuit current density values which resulted from better transportation and collection of photo-generated charge carriers. The synergistic effect of the high electrical conductivity of the composites and the formation of good ohmic contact at the interface between the anode and the active layer not only facilitates charge carrier transport but also impairs their recombination to yield better photovoltaic performance.



The authors are grateful to the National Research Foundation (NRF), the University of KwaZulu-Natal and the UKZN Nanotechnology Platform for supporting this research work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_8781_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3172 KB)


  1. 1.
    N. Gasparini, M. Salvador, T. Heumueller, M. Richter, A. Classen, S. Shrestha, G.J. Matt, S. Holliday, S. Strohm, H.J. Egelhaaf, Adv. Energy Mater. 7, 1701561 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Renew. Sustain. Energy Rev. 68, 234–246 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, J. Mater. Chem. A 5, 11462–11482 (2017)CrossRefGoogle Scholar
  4. 4.
    Z. Yang, J.Z. Fan, A.H. Proppe, F.P.G. de Arquer, D. Rossouw, O. Voznyy, X. Lan, M. Liu, G. Walters, R. Quintero-Bermudez, Nat. Commun. 8, 1325 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Kalowekamo, E. Baker, Sol. Energy 83, 1224–1231 (2009)CrossRefGoogle Scholar
  6. 6.
    F.A.S. Lima, M.J. Beliatis, B. Roth, T.R. Andersen, A. Bortoti, Y. Reyna, E. Castro, I.F. Vasconcelos, S.A. Gevorgyan, F.C. Krebs, APL Mater. 4, 026104 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Krantz, K. Forberich, P. Kubis, F. Machui, J. Min, T. Stubhan, C.J. Brabec, Org. Electron. 17, 334–339 (2015)CrossRefGoogle Scholar
  8. 8.
    S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, ACS Nano 4, 3169–3174 (2010)CrossRefGoogle Scholar
  9. 9.
    R.R. Søndergaard, M. Hösel, F.C. Krebs, J. Polym. Sci. Pol. Phys. 51, 16–34 (2013)CrossRefGoogle Scholar
  10. 10.
    O.A. Abdulrazzaq, V. Saini, S. Bourdo, E. Dervishi, A.S. Biris, Part. Sci. Technol. 31, 427–442 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Jing, D. Zhenbo, L. Chunjun, X. Denghui, X. Ying, G. Dong, Physica E 28, 323–327 (2005)CrossRefGoogle Scholar
  12. 12.
    Z. Yin, J. Wei, Q. Zheng, Adv. Sci. 3, 1500362 (2016)CrossRefGoogle Scholar
  13. 13.
    S. van Reenen, S. Kouijzer, R.A. Janssen, M.M. Wienk, M. Kemerink, Adv. Mater. Interfaces 1, 1400189 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Hösel, D. Angmo, R.R. Søndergaard, R. dos Benatto, J.E. Carlé, M. Jørgensen, F.C. Krebs, Adv. Sci. 1, 1400002 (2014)CrossRefGoogle Scholar
  15. 15.
    C.-C. Chueh, C.-Z. Li, A.K.-Y. Jen, Energy Environ. Sci. 8, 1160–1189 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Ma, H.L. Yip, F. Huang, A.K.Y. Jen, Adv. Funct. Mater. 20, 1371–1388 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Bilby, B. Frieberg, S. Kramadhati, P. Green, J. Kim, ACS Appl. Mater. Interfaces 6, 14964–14974 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang, Nat. Mater. 10, 296–302 (2011)CrossRefGoogle Scholar
  19. 19.
    S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, J.-Y. Lee, ACS Nano 8, 3302–3312 (2014)CrossRefGoogle Scholar
  20. 20.
    N. Li, T. Stubhan, D. Baran, J. Min, H. Wang, T. Ameri, C.J. Brabec, Adv. Energy Mater. 3, 301–307 (2013)CrossRefGoogle Scholar
  21. 21.
    Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, ACS Appl. Mater. Interfaces 5, 9015–9025 (2013)CrossRefGoogle Scholar
  22. 22.
    F. Wang, Z.a.. Tan, Y. Li, Environ. Sci. 8, 1059–1091 (2015)Google Scholar
  23. 23.
    T.A. Amollo, G.T. Mola, M.S.K. Kirui, V.O. Nyamori, Crit. Rev. Solid State Mater. Sci. 1–25 (2017).
  24. 24.
    F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H. Radamson, J. Mater. Sci.: Mater. Electron. 26, 4347–4379 (2015)Google Scholar
  25. 25.
    M.I.A. Umar, C.C. Yap, R. Awang, M.M. Salleh, J. Mater. Sci.: Mater. Electron. 28, 1038–1041 (2017)Google Scholar
  26. 26.
    N. Kim, H. Kang, J.H. Lee, S. Kee, S.H. Lee, K. Lee, Adv. Mater. 27, 2317–2323 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Hu, L. Chen, L. Tan, T. Ji, Y. Zhang, L. Zhang, D. Zhang, Y. Chen, J. Mater. Chem. A 4, 6645–6652 (2016)CrossRefGoogle Scholar
  28. 28.
    N. Kim, B.H. Lee, D. Choi, G. Kim, H. Kim, J.-R. Kim, J. Lee, Y.H. Kahng, K. Lee, Phys. Rev. Lett. 109, 106405 (2012)CrossRefGoogle Scholar
  29. 29.
    Y.-J. Lin, J.-J. Zeng, C.-L. Tsai, Appl. Phys. Lett. 101, 053305 (2012)CrossRefGoogle Scholar
  30. 30.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228–240 (2010)CrossRefGoogle Scholar
  31. 31.
    C.T. Smith, R.W. Rhodes, M.J. Beliatis, K. Imalka Jayawardena, L.J. Rozanski, C.A. Mills, S.R.P. Silva, Appl. Phys. Lett. 105, 129_1 (2014)Google Scholar
  32. 32.
    J.M. Yun, J.S. Yeo, J. Kim, H.G. Jeong, D.Y. Kim, Y.J. Noh, S.S. Kim, B.C. Ku, S.I. Na, Adv. Mater. 23, 4923–4928 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, Adv. Mater. 24, 2228–2233 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Kamata, Mater. Today 11, 30–38 (2008)CrossRefGoogle Scholar
  35. 35.
    H. Philipp, E. Taft, Phys. Rev. 113, 1002 (1959)CrossRefGoogle Scholar
  36. 36.
    Y. Maeda, Phys. Rev. B 51, 1658 (1995)CrossRefGoogle Scholar
  37. 37.
    W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  38. 38.
    D. Li, K.H. Seng, D. Shi, Z. Chen, H.K. Liu, Z. Guo, J. Mater. Chem. A 1, 14115–14121 (2013)CrossRefGoogle Scholar
  39. 39.
    T.A. Amollo, G.T. Mola, V.O. Nyamori, Nanotechnology 28, 495703 (2017)CrossRefGoogle Scholar
  40. 40.
    D. Carolan, H. Doyle, J. Mater. Chem. C 2, 3562–3568 (2014)CrossRefGoogle Scholar
  41. 41.
    D.C. Lee, J.M. Pietryga, I. Robel, D.J. Werder, R.D. Schaller, V.I. Klimov, J. Am. Chem. Soc. 131, 3436–3437 (2009)CrossRefGoogle Scholar
  42. 42.
    B.F. McVey, P. O’Mara, A.J. McGrath, A. Faramus, V.B. Yasarapudi, V.R. Gonçales, V.T. Tan, T.W. Schmidt, J.J. Gooding, R.D. Tilley, Langmuir 33, 8790–8798 (2017)CrossRefGoogle Scholar
  43. 43.
    Z. Yang, J.G. Veinot, J. Mater. Chem. 21, 16505–16509 (2011)CrossRefGoogle Scholar
  44. 44.
    T. Ji, L. Tan, X. Hu, Y. Dai, Y. Chen, Phys. Chem. Chem. Phys. 17, 4137–4145 (2015)CrossRefGoogle Scholar
  45. 45.
    X.G. Mbuyise, E.A. Arbab, K. Kaviyarasu, G. Pellicane, M. Maaza, G.T. Mola, J. Alloys Compd. 706, 344–350 (2017)CrossRefGoogle Scholar
  46. 46.
    D. Taylor, IEEE Trans. Dielectr. Electr. Insul. 13, 1063–1073 (2006)CrossRefGoogle Scholar
  47. 47.
    G. Tessema, Appl. Phys. A 106, 53–57 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Nazerdeylami, H.R. Dizaji, J. Mater. Sci.: Mater. Electron. 27, 10592–10599 (2016)Google Scholar
  49. 49.
    D.J. Xue, J.J. Wang, Y.Q. Wang, S. Xin, Y.G. Guo, L.J. Wan, Adv. Mater. 23, 3704–3707 (2011)CrossRefGoogle Scholar
  50. 50.
    V.H. Pham, T.V. Cuong, T.-D. Nguyen-Phan, H.D. Pham, E.J. Kim, S.H. Hur, E.W. Shin, S. Kim, J.S. Chung, Chem. Commun. 46, 4375–4377 (2010)CrossRefGoogle Scholar
  51. 51.
    Y. Park, K. Soon Choi, S. Young, Kim, Phys. Status Solidi (a) 209, 1363–1368 (2012)CrossRefGoogle Scholar
  52. 52.
    H.P. Kim, A.R. bin Mohd Yusoff, J. Jang, Sol. Energy Mater. Sol. Cells 110, 87–93 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.School of Chemistry and PhysicsUniversity of KwaZulu-NatalScottsvilleSouth Africa

Personalised recommendations