Effect of excess Bi on the structure and electrical properties of CaBi2Nb2O9 ultrahigh temperature piezoceramics

  • Chen Qin
  • Zong-Yang Shen
  • Wen-Qin Luo
  • Fu-Sheng Song
  • Yan Hong
  • Zhu-Mei Wang
  • Yue-Ming Li
Article
  • 55 Downloads

Abstract

CaBi2Nb2O9 + x wt% Bi2O3 (x = 0, 1, 2, 3) ceramics with bismuth layer structure were prepared by solid state reaction route. The effect of excess bismuth on the crystal structure, microstructure and electrical properties of the ceramics was investigated. At all compositions, orthorhombic symmetric bismuth layer structure was formed without secondary phases. Excess bismuth caused more uniform grains. The ceramic with excess Bi2O3 of 1 wt% exhibited optimal electrical properties as follows: piezoelectric constant d33 = 6.4 pC/N, planar electromechanical coupling coefficient kp = 11.0%, dielectric constant \(\varepsilon _{{33}}^{T}/{\varepsilon _0}\) = 93.5, dielectric loss tanδ = 0.24%, and resistivity ρ = 2.9 × 106 Ω cm (@ 500 °C). This ceramic also possess ultrahigh Curie temperature Tc = 940 °C, indicating its potential application for high temperature sensors and actuators.

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (61671224) and Science Foundation of Jiangxi Provincial Education Department of China (GJJ160919).

References

  1. 1.
    S. Zhang, F. Yu, J. Am. Ceram. Soc. 94, 3153–3170 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Moure, A. Castro, L. Pardo, Prog. Solid State Chem. 37, 15–39 (2009)CrossRefGoogle Scholar
  3. 3.
    E.C. Subbarao, J. Phys. Chem. Solids 23, 665–676 (1962)CrossRefGoogle Scholar
  4. 4.
    R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Mater. Res. Bull. 6, 1029–1039 (1971)CrossRefGoogle Scholar
  5. 5.
    F.Q. Zhang, Y.X. Li, J. Inorg. Mater. 29, 449–460 (2014)Google Scholar
  6. 6.
    H. Yan, H. Zhang, R. Ubic, M.J. Reece, J. Liu, Z. Shen, Z. Zhang, Adv. Mater. 17, 1261–1265 (2005)CrossRefGoogle Scholar
  7. 7.
    X. Tian, S. Qu, H. Ma, Z. Pei, B. Wang, J. Mater. Sci.: Mater. Electron. 27, 13309–13313 (2016)Google Scholar
  8. 8.
    C.M. Wang, J.F. Wang, S. Zhang, T.R. Shrout, Phys. Status Solidi RRL 3, 49–51 (2009)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, H. Yan, M.J. Reece, J. Am. Ceram. Soc. 91, 2928–2932 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Zou, Y. Hu, X. Zhu, D. Peng, X. Chai, X. Wang, B. Liu, D. Shen, J. Mater. Sci.: Mater. Electron. 28, 11921–11925 (2017)Google Scholar
  11. 11.
    H. Chen, B. Shen, J. Xu, L. Kong, J. Zhai, J. Am. Ceram. Soc. 95, 3514–3518 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.R. Zhang, J.F. Li, B.P. Zhang, C.E. Peng, J. Appl. Phys. 103, 074109 (2008)CrossRefGoogle Scholar
  13. 13.
    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 98, 012902 (2011)CrossRefGoogle Scholar
  14. 14.
    Q. Guo, H. Sun, X. Liu, H. Sui, Y. Zhang, D. Zhou, P. Liu, Y. Ruan, J. Mater. Sci.: Mater. Electron. 28, 17399–17404 (2017)Google Scholar
  15. 15.
    T.R. Meeker, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 717 (1996)CrossRefGoogle Scholar
  16. 16.
    Z. Zhou, X. Dong, H. Chen, H. Yan, J. Am. Ceram. Soc. 89, 1756–1760 (2006)CrossRefGoogle Scholar
  17. 17.
    C.M. Wang, J.F. Wang, S. Zhang, T.R. Shrout, J. Appl. Phys. 105, 094110 (2009)CrossRefGoogle Scholar
  18. 18.
    M.S. Kim, D.S. Lee, E.C. Park, S.J. Jeong, J.S. Song, J. Eur. Ceram. Soc. 27, 4121–4124 (2007)CrossRefGoogle Scholar
  19. 19.
    H.T. Li, B.P. Zhang, P.P. Shang, Y. Fan, Q. Zhang, J. Am. Ceram. Soc. 94, 628–632 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Appl. Phys. Lett. 96, 022901 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Zhang, N. Kim, T.R. Shrout, M. Kimura, A. Ando, Solid State Commun. 140, 154–158 (2006)CrossRefGoogle Scholar
  22. 22.
    Z.Y. Shen, H.J. Sun, Y.X. Tang, Y.M. Li, S.J. Zhang, Mater. Res. Bull. 63, 129–133 (2015)CrossRefGoogle Scholar
  23. 23.
    S.K. Rout, A. Hussain, E. Sinha, C.W. Ahn, I.W. Kim, Solid State Sci. 11, 1144–1149 (2009)CrossRefGoogle Scholar
  24. 24.
    Z.Y. Shen, W.Q. Luo, Y. Tang, S. Zhang, Y.M. Li, Ceram. Int. 42, 7868–7872 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chen Qin
    • 1
  • Zong-Yang Shen
    • 1
  • Wen-Qin Luo
    • 1
  • Fu-Sheng Song
    • 1
  • Yan Hong
    • 1
  • Zhu-Mei Wang
    • 1
  • Yue-Ming Li
    • 1
  1. 1.Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and EngineeringJingdezhen Ceramic InstituteJingdezhenChina

Personalised recommendations