Skip to main content
Log in

Simple and sustainable route for large scale fabrication of few layered molybdenum disulfide sheets towards superior adsorption of the hazardous organic pollutant

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The exfoliation of a bulk material to a few layer thickness without using expensive exfoliating agents and chemicals is essential for practical applications in various fields. In this study, a simple and scalable mechanical milling process was used to improve the surface and adsorption characteristics of bulk MoS2 through a reduction of the layered thickness to a few layers as well as a significant increase in the surface area of the MoS2. The resulting and optimized MoS2 were characterized using various spectroscopic and microscopic techniques, as well as nitrogen adsorption–desorption isotherm analysis. The adsorption property of the exfoliated MoS2 for crystal violet dye (CV) was assessed. The results showed that prolonged (60 h) milled MoS2 had the highest adsorptive removal of CV. The adsorption mechanism of CV onto the MoS2 nanosheets was investigated in terms of the adsorption kinetics, thermodynamics, and isotherms. The optimal removal of CV was observed at pH 10 and a pseudo-second order kinetic model was best fitted to the adsorption dynamic data. The adsorption of CV onto the MoS2 nanosheets was endothermic and the adsorption equilibrium data followed the Langmuir isotherm model. The maximum monolayer adsorption capacity of the MoS2 nanosheets increased from 144.92 to 161.29 mg g−1 with increasing solution temperature from 30 to 50 °C. These results showed that ball milling is an efficient method to exfoliate bulk MoS2 to MoS2 nanosheets and the exfoliated nanosheets could be used as an efficient adsorbent for the scavenging of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Zhou, M. Zhang, X. Wang, Q. Huang, Y. Min, T. Ma, J. Niu, Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Ind. Eng. Chem. Res. 53, 5498–5506 (2014)

    Article  CAS  Google Scholar 

  2. A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5, 30801–30818 (2015)

    Article  CAS  Google Scholar 

  3. G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem Technol. Biotechnol. 89, 196–205 (2014)

    Article  CAS  Google Scholar 

  4. A.T. Massey, R. Gusain, S. Kumari, O.P. Khatri, Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 55, 7124–7131 (2016)

    Article  CAS  Google Scholar 

  5. X. Cai, J. He, L. Chen, K. Chen, Y. Li, K. Zhang, Z. Jin, J. Liu, C. Wang, X. Wang, L. Kong, J. Liu, A 2D-g-C3N4 nanosheet as an eco-friendly adsorbent for various environmental pollutants in water. Chemosphere 171, 192–201 (2017)

    Article  CAS  Google Scholar 

  6. W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Porous boron nitride nanosheets for effective water cleaning. Nat. Commun. 4, 1777 (2013). https://doi.org/10.1038/ncomms2818

    Article  CAS  Google Scholar 

  7. J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012)

    Article  CAS  Google Scholar 

  8. Q. Huang, Y. Fang, J. Shi, Y. Liang, Y. Zhu, G. Xu, Flower-like molybdenum disulfide for polarity-triggered accumulation/release of small molecules. ACS Appl. Mater. Interfaces 9, 36431–36437 (2017)

    Article  CAS  Google Scholar 

  9. A. Gupta, V. Arunachalam, S. Vasudevan, Liquid-phase exfoliation of MoS2 nanosheets: the critical role of trace water. J. Phys. Chem. Lett. 7(23), 4884–4890 (2016)

    Article  CAS  Google Scholar 

  10. X. Fan, P. Xu, Y.C. Li, D. Zhou, Y. Sun, M.A.T. Nguyen, M. Terrones, T.E. Mallouk, Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J. Am. Chem. Soc. 138, 5143–5149 (2016)

    Article  CAS  Google Scholar 

  11. V. Forsberg, R. Zhang, J. Bäckström, C. Dahlström, B. Andres, M. Norgren, M. Andersson, M. Hummelgård, H. Olin, Exfoliated MoS2 in water without additives. PLoS ONE 11(4), e0154522 (2016). https://doi.org/10.1371/journal.pone.0154522

    Article  CAS  Google Scholar 

  12. L. Wang, S.-K. Bao, Y.-H. Wang, J.-P. Zou, Efficient exfoliation of bulk MoS2 to nanosheets by mixed-solvent refluxing method. Int. J. Hydrog. Energy 41, 10737–10743 (2016)

    Article  CAS  Google Scholar 

  13. A. Ambrosi, X. Chia, Z. Sofer, M. Pumera, Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling. Electrochem. Commun. 54, 36–40 (2015)

    Article  CAS  Google Scholar 

  14. S.A. Ansari, M.S. Ansari, M.H. Cho, Metal free earth abundant elemental red phosphorus: a new class of visible light photocatalyst and photoelectrode materials. Phys. Chem. Chem. Phys. 18, 3921–3928 (2016)

    Article  CAS  Google Scholar 

  15. S.A. Ansari, M.H. Cho, Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications. Sci. Rep. 7, 43055 (2017)

    Article  Google Scholar 

  16. J. Song, Z. Yu, M.L. Gordin, S. Hu, R. Yi, D. Tang, T. Walter, M. Regula, D. Choi, X. Li, A. Manivannan, D. Wang, Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Letters 14(11), 6329–6335 (2014)

    Article  CAS  Google Scholar 

  17. K. Zhu, W. Wang, A. Meng, M. Zhao, J. Wang, M. Zhao, D. Zhang, Y. Jia, C. Xu, Z. Li, Mechanically exfoliated g-C3N4 thin nanosheets by ball milling as high performance photocatalysts. RSC Adv. 5, 56239–56243 (2015)

    Article  CAS  Google Scholar 

  18. S.A. Ansari, H. Fouad, S.G. Ansari, M.H. Cho, Mechanically exfoliated molybdenum disulfide/conductive polyaniline nanocomposite as a superior supercapacitor electrode material. J. Colloid Interface Sci. 504, 276–282 (2017)

    Article  CAS  Google Scholar 

  19. N. Parveen, M.O. Ansari, M.H. Cho, Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance. RSC Adv. 5, 44920 (2015)

    Article  CAS  Google Scholar 

  20. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 343, 463–473 (2010)

    Article  CAS  Google Scholar 

  21. V. Sabna, G. Santosh, S. Thampi, Chandrakaran, Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 134, 390–397 (2016)

    Article  CAS  Google Scholar 

  22. X.-Q. Qiao, F.-C. Hu, F.-Y. Tian, D.-F. Hou, D.-S. Li, Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv. 6, 11631 (2016)

    Article  CAS  Google Scholar 

  23. M.I. Konggidinata, B. Chao, Q. Lian, R. Subramaniam, M. Zappi, D.D. Gang, Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto ordered mesoporous carbon (OMC). J. Hazard. Mater. 336, 249–259 (2017)

    Article  CAS  Google Scholar 

  24. S. Han, K. Liu, L. Hu, F. Teng, P. Yu, Y. Zhu, Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Sci. Rep. 7, 43599 (2017). https://doi.org/10.1038/srep43599

    Article  Google Scholar 

  25. N. Li, Z. Mei, X. Wei, Study on sorption of chlorophenols from aqueous solutions by an insoluble copolymer containing b-cyclodextrin and polyamidoamine units. Chem. Eng. J. 192, 138–145 (2012)

    Article  CAS  Google Scholar 

  26. Q. Song, Y. Fang, Z. Liu, L. Li, Y. Wang, J. Liang, Y. Huang, J. Lin, L. Hu, J. Zhang, C. Tang, The performance of porous hexagonal BN in high adsorption capacity towards antibiotics pollutants from aqueous solution. Chem. Eng. J. 325, 71–79 (2017)

    Article  CAS  Google Scholar 

  27. R. Kumar, M.A. Barakat, Decolourization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel. Chem. Eng. J. 226, 377–383 (2013)

    Article  CAS  Google Scholar 

  28. N. Tahir, H.N. Bhatti, M. Iqbal, S. Noreen, Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int. J. Biol. Macromol. 94, 210–220 (2017)

    Article  CAS  Google Scholar 

  29. C. Muthukumaran, V.M. Sivakumar, M. Thirumarimurugan, Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. Eng. 63, 354–362 (2016)

    Article  CAS  Google Scholar 

  30. R. Kumar, R. Ahmad, Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 265, 112–118 (2011)

    Article  CAS  Google Scholar 

  31. A. Pal, S. Pan, S. Saha, Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads. Chem. Eng. J. 217, 426–434 (2013)

    Article  CAS  Google Scholar 

  32. L. Aref, A.H. Navarchian, D. Dadkhah, Adsorption of crystal violet dye from aqueous solution by poly(acrylamide-co-maleic acid)/montmorillonite nanocomposite. J. Polym. Environ. 25, 628–639 (2017)

    Article  CAS  Google Scholar 

  33. J. Qin, F. Qiu, X. Rong, J. Yan, H. Zhao, D. Yang, Adsorption behavior of crystal violet from aqueous solutions with chitosan–graphite oxide modified polyurethane as an adsorbent. J. Appl. Polym. Sci. 132, 41828. https://doi.org/10.1002/app.41828

  34. S. Gopi, S. Anitha Pius, Thomas, Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J. Water Process Eng. 14, 1–8 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Priority Research Centers Program (Grant No: 2014R1A6A1031189) through the National Research Foundation of Korea funded by the Ministry of Education in South Korea. The authors acknowledge with the thanks Deanship of Scientific Research (DSR) at King Abdulziz University, Jeddah, for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Hwan Cho.

Additional information

Sajid Ali Ansari and Rajeev Kumar have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1455 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S.A., Kumar, R., Barakat, M.A. et al. Simple and sustainable route for large scale fabrication of few layered molybdenum disulfide sheets towards superior adsorption of the hazardous organic pollutant. J Mater Sci: Mater Electron 29, 7792–7800 (2018). https://doi.org/10.1007/s10854-018-8777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8777-x

Navigation