Growth of AlGaN-based multiple quantum wells on SiC substrates

  • Xu Han
  • Yuantao Zhang
  • Pengchong Li
  • Long Yan
  • Gaoqiang Deng
  • Liang Chen
  • Ye Yu
  • Degang Zhao
  • Jingzhi Yin


Al0.2Ga0.8N/Al0.45Ga0.55N multiple quantum wells (MQWs) were grown on SiC substrates by metal–organic chemical vapor deposition. We studied the influence of well width and barrier width on the structural and optical properties of AlGaN MQWs in details. The MQWs structures prepared in this work all exhibited good periodicity and abrupt interfaces. When the barrier width was fixed, the thinner well was benefit to increase the integrated photoluminescence (PL) intensity of the MQWs and obtain a shorter ultraviolet wavelength. And the thicker barrier was also contributed to improve the optical properties while the well width remained the same. Compared with the effect of the well width, the emission wavelength of MQWs was less dependent on the barrier width. A 318-nm room-temperature PL emission was achieved when the well width and barrier width were 2.5 and 11 nm, respectively.



This work was supported by the National Key Research and Development Program (No. 2016YFB0401801), the National Natural Science Foundation of China (Nos. 61674068 and 61376046), the Science and Technology Developing Project of Jilin Province (20150519004JH, 20160101309JC, 20170204045GX).


  1. 1.
    H. Hirayama, S. Fujikawa, N. Kamata, Electron. Commun. Japan 98(5), 1–8 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Pernot, M. Kim, S. Fukahori, T. Inazu, T. Fujita, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, H. Amano, Appl. Phys. Express 3, 061004 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Hirayama, T. Yatabe, N. Noguchi, N. Kamata, Electron. Commun. Japan 93(3), 24–33 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, N. Kamata, Jpn. J. Appl. Phys. 53, 100209 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, M. Wraback, Appl. Phys. Express 5, 082101 (2012)CrossRefGoogle Scholar
  6. 6.
    D.B. Li, K. Jiang, X.J. Sun, C.L. Guo, Adv. Opt. Photonics 10(1), 43–110 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N.M. Johnson, M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011)CrossRefGoogle Scholar
  8. 8.
    H.W. Liang, P.C. Tao, X.C. Xia, Y.P. Chen, K.X. Zhang, Y. Liu, R.S. Shen, Y.M. Luo, Y.T. Zhang, G.T. Du, Jpn. J. Appl. Phys. 55, 031202 (2016)CrossRefGoogle Scholar
  9. 9.
    M.A. Moram, M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009)CrossRefGoogle Scholar
  10. 10.
    S.K. Jana, P. Mukhopadhyay, S. Ghosh, S. Kabi, A. Bag, R. Kumar, D. Biswas, J. Appl. Phys. 115, 174507 (2014)CrossRefGoogle Scholar
  11. 11.
    Q. Yan, P. Rinke, A. Janotti, M. Scheffler, G. Chris. Van de Walle, Phys. Rev. B 90, 125118 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Khan, J. Li, Appl. Phys. Lett. 89, 151916 (2006)CrossRefGoogle Scholar
  13. 13.
    T.M. Al Tahtamouni, N. Nepal, J.Y. Lin, H.X. Jiang, W.W. Chow, Appl. Phys. Lett. 89, 131922 (2006)CrossRefGoogle Scholar
  14. 14.
    S.H. Park, S.L. Chuang, Appl. Phys. Lett. 76, 1981 (2000)CrossRefGoogle Scholar
  15. 15.
    S.P. Łepkowski, J.A. Majewski, G. Jurczak, Phys. Rev. B 72, 245201 (2005)CrossRefGoogle Scholar
  16. 16.
    O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999)CrossRefGoogle Scholar
  17. 17.
    W. Bardyszewski, S.P. Łepkowski, Phys. Rev. B 85, 035318 (2012)CrossRefGoogle Scholar
  18. 18.
    J.J. Wierer Jr., I. Montaño, M.H. Crawford, A.A. Allerman, J. Appl. Phys. 115, 174501 (2014)CrossRefGoogle Scholar
  19. 19.
    V. Kladko, A. Kuchuk, A. Naumov, N. Safriuk, O. Kolomys, S. Kryvyi, H. Stanchu, A. Belyaev, V. Strelchuk, B. Yavich, Yu..I. Mazur, M.E. Ware, G.J. Salamo, Physica E 76, 140–145 (2016)CrossRefGoogle Scholar
  20. 20.
    S.B. Che, T. Mizuno, X.Q. Wang, Y. Ishitani, A. Yoshikawa, J. Appl. Phys. 102, 083539 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Leroux, N. Grandjean, J. Massies, B. Gil, P. Lefebvre, P. Bigenwald, Phys. Rev. B 60, 1496 (1999)CrossRefGoogle Scholar
  22. 22.
    E. Shin, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 77, 1170 (2000)CrossRefGoogle Scholar
  23. 23.
    X.L. Hu, J.Y. Zhang, J.Z. Shang, W.J. Liu, B.P. Zhang, Chin. Phys. B 19(11), 117801 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Bonfiglio, M. Lomascolo, G. Traetta, R. Cingolani, A. Di Carlo, F. Della Sala, P. Lugli, A. Botchkarev, H. Morkoc, J. Appl. Phys. 87, 2289 (2000)CrossRefGoogle Scholar
  25. 25.
    Y.L. Liu, P. Jin, G.P. Liu, W.Y. Wang, Z.Q. Qi, C.Q. Chen, Z.G. Wang, Chin. Phys. B 25(8), 087801 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Kovalev, B. Averboukh, D. Volm, B.K. Meyer, H. Amano, I. Akasaki, Phys. Rev. B 54, 2518 (1996)CrossRefGoogle Scholar
  27. 27.
    A. Sedhain, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 95, 061106 (2009)CrossRefGoogle Scholar
  28. 28.
    Q.X. Guo, A. Yoshida, Jpn. J. Appl. Phys. 33, 2453–2456 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xu Han
    • 1
  • Yuantao Zhang
    • 1
  • Pengchong Li
    • 1
  • Long Yan
    • 1
  • Gaoqiang Deng
    • 1
  • Liang Chen
    • 1
  • Ye Yu
    • 1
  • Degang Zhao
    • 2
  • Jingzhi Yin
    • 1
  1. 1.State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Integrated Optoelectronics, Institute of SemiconductorsChinese Academy of ScienceBeijingChina

Personalised recommendations