Fabrication and characterization of n-ZnO/p-GaAs structure

  • G. Turgut
  • F. S. Kaya
  • S. Duman


In this investigation, n-ZnO/p-GaAs structure is prepared by a sol–gel route. ZnO film has wurtzite structure with (101) preferential direction. The nano-sized particles are homogeneously dispersed on the film surface. The root mean square roughness and optical band gap values are determined to be 11.49 nm and 3.272 eV. The electrical study shows that n-ZnO/p-GaAs structure has a rectifying property under the dark. The ideality factor and barrier height of structure are defined to be 1.52 and 0.92 eV, respectively. As a result of present work, n-ZnO/p-GaAs structure can be used in a variety of electronic applications.


  1. 1.
    G. Juárez-Diaz, J. Martínez, M.L. García-Cruz, R. Peña-Sierra, J.A. García, M. Pacio, Hall effect and conductivity in zinc oxide (ZnO) doped by thermal diffusion of indium and copper. Phys. Status Solidi C. 7, 957–959 (2010)Google Scholar
  2. 2.
    H.S. Yoon, K.S. Lee, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim, Properties of fluorine doped ZnO thin films deposited by magnetron sputtering. Sol. Energy Mater. Sol. Cell. 92, 1366–1372 (2008)CrossRefGoogle Scholar
  3. 3.
    E. Pál, I. Dékány, Structural, optical and photoelectric properties of indium-doped zinc oxide nanoparticles prepared in dimethyl sulphoxide. Colloid Surf. A 318, 141–150 (2008)CrossRefGoogle Scholar
  4. 4.
    D.C. Altamirano-Juárez, G. Torres-Delgado, S. Jiménez-Sandoval, O. Jiménez-Sandoval, R. Castanedo-Pérez, Low-resistivity ZnO:F:Al transparent thin films. Sol. Ener. Mater. Sol. Cel. 82, 35–43 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Liang, R.G. Gordon, Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells. J. Mater. Sci. 42, 6388–6399 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Ilican, K. Gorgun, S. Aksoy, Y. Caglar, M. Caglar, Fabrication of p-Si/n-ZnO:Al heterojunction diode and determination of electrical parameters. J. Mol. Struct. 1156, 675–683 (2018)CrossRefGoogle Scholar
  7. 7.
    E.F. Keskenler, G. Turgut, S. Doğan, Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium. Superlattice Microstruct. 52, 107–115 (2012)CrossRefGoogle Scholar
  8. 8.
    A.E. Morales, M.H. Zaldivar, U. Pal, Indium doping in nanostructured ZnO through low-temperature hydrothermal process. Opt. Mater. 29, 100–104 (2006)CrossRefGoogle Scholar
  9. 9.
    P. Wang, N. Chen, Z. Yin, F. Yang, C. Peng, Fabrication and properties of Sb-doped ZnO thin films grown by radio frequency (RF) magnetron sputtering. J. Cryst. Growth 290, 56–60 (2006)CrossRefGoogle Scholar
  10. 10.
    M.N. Jung, E.S. Lee, T.-I. Jeon, K.S. Gil, J.J. Kim, Y. Murakami, S.H. Lee, S.H. Park, H.J. Lee, T. Yao, H. Makino, J.H. Chang, Synthesis and investigation on the extrinsic carrier concentration of indium doped ZnO tetrapods. J. Alloys Compd. 481, 649–653 (2009)CrossRefGoogle Scholar
  11. 11.
    S.K. Sharma, S.P. Singh, D.Y. Kim, Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method. Solid State Commun. 270, 124–129 (2018)CrossRefGoogle Scholar
  12. 12.
    A.Y. Polyakov, N.B. Smirnov, E.A. Kozhukhova, V.I. Vdodin, K. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, Electrical characteristics of Au and Ag Schottky contacts on n-ZnO. Appl. Phys. Lett. 83, 1575–1577 (2003)CrossRefGoogle Scholar
  13. 13.
    G. Turgut, E.F. Keskenler, Single and multiple doping effects of silico-boron and fluorine on ZnO thin films deposited with sol-gel spin coating technique. J. Mater. Sci.: Mater. Electron. 25, 273–285 (2014)Google Scholar
  14. 14.
    R.C. Eden, Comparison of GaAs device ultrahigh-speed approaches for VLSl. Proc. IEEE 70, 5–12 (1982)CrossRefGoogle Scholar
  15. 15.
    S. Ajram, G. Salmer, Ultrahigh frequency DC-to-DC converters using GaAs power switches. IEEE Trans. Power Electron. 16, 594–602 (2001)CrossRefGoogle Scholar
  16. 16.
    M.K. Ryu, S.H. Lee, M.S. Jang, G.N. Panin, T.W. Kang, Post growth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique. J. Appl. Phys. 92, 155–158 (2002)CrossRefGoogle Scholar
  17. 17.
    H.F. Liu, S.J. Chua, G.X. Hu, H. Gong, N. Xiang, Effects of substrate on the structure and orientation of ZnO thin film grown by rf magnetron sputtering. J. Appl. Phys. 102, 083529 (2007)CrossRefGoogle Scholar
  18. 18.
    T.S. Jang, K.B. Kim, S.M. Lee, H.J. Ko, D.C. Oh, Influence of thermal annealing on the physical properties of ZnO films grown on Si and GaAs substrates. J. Nanosci. Nanotechnol. 17, 3551–3556 (2017)CrossRefGoogle Scholar
  19. 19.
    G. Du, Y. Cui, X. Xiaochuan, X. Li, H. Zhu, B. Zhang, Y. Zhang, Y. Ma, Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 90, 243504 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Sun, H. Liang, J. Zhao, Q. Feng, J. Bian, Z. Zhao, H. Zhang, Y. Luo, L. Hua, G. Du, Annealing effects on electrical and optical properties of ZnO films deposited on GaAs by metal organic chemical vapor deposition. Appl. Surf. Sci. 254, 7482–7485 (2008)CrossRefGoogle Scholar
  21. 21.
    P. Köç, S. Tekmen, A. Baltakesmez, S. Tüzemen, K. Meral, Y. Onganer, Stimulated electroluminescence emission from n-ZnO/p-GaAs:Zn heterojunctions fabricated by electro-deposition. AIP Adv. 3, 122107 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Tekmen, E. Gür, H. Asıl, K. Çınar, C. Coşkun, S. Tüzemen, Structural, optical, and electrical properties of n-ZnO/p-GaAs heterojunction. Phys. Status Solidi A 207, 1464–1467 (2010)CrossRefGoogle Scholar
  23. 23.
    V. Craciun, J. Eldersb, J.G.E. Gardeniersh, J. Geretovsky, I.W. Boyd, Growth of ZnO thin films on GaAs by pulsed laser deposition. Thin Solid Films 259, 1–4 (1995)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, H.-L. Lu, Y. Geng, Q.-Q. Sun, S.-J. Ding, D.W. Zhang, Impact of rapid thermal annealing on structural and electrical properties of ZnO thin films grown atomic layer deposition on GaAs substrates. Vacuum 103, 1–4 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.Z. Zhang, D.Z. Shen, Y.M. Lu, J.Y. Zhang, B.H. Li, D.X. Zhao, B. Yao, X.W. Fan, Optical properties of ZnO fabricated on GaAs by molecular beam epitaxy. J. Luminesc. 122–123, 202–204 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Soylu, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, The electrical characterization of ZnO/GaAs heterojunction diode. Physica E 64, 240–245 (2014)CrossRefGoogle Scholar
  27. 27.
    G. Turgut, E.F. Keskenler, S. Aydın, S. Dogan, S. Duman, Ş Özçelik, B. Gurbulak, B. Esen, Fabrication and characterization of Al/Cu2ZnSnS4/n-Si/Al heterojunction photodiodes. Phys. Status Solidi A 211, 80–86 (2014)CrossRefGoogle Scholar
  28. 28.
    E.F. Keskenler, G. Turgut, S. Aydin, S. Dogan, B. Duzgun, The effect of fluorine and tungsten co-doping on optical, electrical and structural properties of tin (IV) oxide thin films prepared by solgel spin coating method. Opt. Appl. 43, 663–677 (2013)Google Scholar
  29. 29.
    G. Turgut, E. Sonmez, S. Duman, Determination of certain sol-gel growth parameters of nickel oxide films. Ceram. Int. 41, 2976–2989 (2015)CrossRefGoogle Scholar
  30. 30.
    Y.-C. Huang, L.-W. Weng, W.-Y. Uen, S.-M. Lan, Z.-Y. Li, S.-M. Liao, T.-Y. Lin, T.-N. Yang, Annealing effects on the p-type ZnO films fabricated on GaAs substrate by atmospheric pressure metal organic chemical vapor deposition. J. Alloys Compd. 509, 1980–1983 (2011)CrossRefGoogle Scholar
  31. 31.
    G. Turgut, E. Sönmez, Synthesis and characterization of Mo doped SnO2 thin films with spray pyrolysis. Superlattice Microstruct. 69, 175–186 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Turgut, E.F. Keskenler, S. Aydın, M. Yılmaz, S. Doğan, B. Düzgün, An investigation of the Nb doping effect on structural, morphological, electrical and optical properties of spray deposited F doped SnO2 films. Phys. Scr. 87, 035602 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Turgut, S. Duman, F. Özçelik, E. Sönmez, B. Gürbulak, An investigation of Zn/ZnO:Al/p-Si/Al heterojunction diode by sol-gel spin coating technique. J. Sol-Gel Sci. Technol. 71, 589–596 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Turgut, E. Sonmez, A study of Pb-doping effect on structural, optical, and morphological properties of ZnO thin films deposited by sol-gel spin coating. Metall. Mater. Trans. A 45, 3675–3685 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Yumak, G. Turgut, O. Kamoun, H. Ozisik, E. Deligoz, P. Petkova, R. Mimouni, K. Boubaker, M. Amlouk, S. Goumri-Said, Stability and morphology-dependence of Sc3+ ions incorporation and substitution kinetics within ZnO hostlattice. Mater. Sci. Semicond. Process. 39, 103–111 (2015)CrossRefGoogle Scholar
  36. 36.
    B. Houng, C.-L. Huang, S.-Y. Tsai, Effect of the pH on the growth and properties of sol-gel derived boron-doped ZnO transparent conducting thin film. J. Cryst. Growth. 307, 328–333 (2007)CrossRefGoogle Scholar
  37. 37.
    I. Sorar, D. Saygin-Hinczewski, M. Hinczewski, F.Z. Tepehan, Optical and structural properties of Si-doped ZnO thin films. Appl. Surf. Sci. 257, 7343–7349 (2011)CrossRefGoogle Scholar
  38. 38.
    G. Turgut, Investigation of characteristic properties of Pr-doped SnO2 thin films. Phil. Mag. 95, 1607–1625 (2015)CrossRefGoogle Scholar
  39. 39.
    A.K. Das, P. Misra, L.M. Kukreja, Effect of Si doping on electrical and optical properties of ZnO thin films grown by sequential pulsed laser deposition. J. Phys. D: Appl. Phys. 42, 165405 (2009)CrossRefGoogle Scholar
  40. 40.
    L. Chabane, N. Zebbar, M.L. Zeggar, M.S. Ajda, M. Kechouane, M. Trari, Effects of CuO film thickness on electrical properties of CuO/ZnO and CuO/ZnS hetero-junctions. Mater. Sci. Semicond. Process. 40, 840–847 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Lu, J. Huang, B. Li, K. Tang, Y. Ma, M. Cao, L. Wang, A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes. Appl. Surf. Sci. 128, 61–65 (2018)CrossRefGoogle Scholar
  42. 42.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)Google Scholar
  43. 43.
    R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Basic Sciences, Science FacultyErzurum Technical UniversityErzurumTurkey
  2. 2.Department of Physics, Science FacultyAtaturk UniversityErzurumTurkey

Personalised recommendations