Synthesis and enhanced microwave absorption properties of BaM-P/BaM-T/PVB ternary composite with ordered inter-filled structure

  • Li He
  • Yuchen Zhao
  • Jianhong Wang
  • Pengyu Wang
  • Hongwei Xie
  • Chao Zhang


The granular ferrite fillers like BaFe12O19 (BaM-P) usually work as an auxiliary material in the EMA composite, but shows weak electromagnetic wave absorbing (EMA) capability (RL > − 10 dB) when single used. In this work, an orderly filled ferrite/polymer composite has been made by a versatile tape casting method. The micron BaFe12O19 template particles (BaM-T) were obtained by a two-step molten salt method and were oriented and uniformly inserted into the BaM-P/polyvinyl butyral (PVB) composite to form a BaM-T/BaM-P/PVB ternary composite with laminated micro-structure. The composite shows greatly enhanced EMA properties with broadening effective EMA bandwidth. The optimal sample displayed a minimum reflection loss of − 45.8 dB at 6.6 GHz and effective EMA bandwidth (RL < − 10 dB) of 3–18 GHz with 2–5 mm thick. The maximum effective EMA bandwidth of 4.16 GHz was obtained at the thickness of 1.8 mm. Finite element simulation verified that, the strong barrier interfaces attributed by the oriented BaM-T flakes can effectively improve absorptive intensity and decrease sample thickness via a particular multiple reflection mechanism. Additionally, the large range of filler particle size from nano to micro can make the effective bandwidth to be broadened. This work demonstrates the great potential of the ferrite materials for EMA application.



This work is supported by National Natural Science Foundation of China (Grant No. 51602256), Natural Science Foundation of Shaanxi Province of China (Grant No. 2017JQ5024), Young Talent fund of University Association for Science and Technology in Shaanxi, China (Grant No. 20170514).


  1. 1.
    Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Chem. Eng. J. 334, 1740–1748 (2018)CrossRefGoogle Scholar
  2. 2.
    T. Chen, J. Qiu, K. Zhu, Y. Che, Y. Zhang, J. Zhang, H. Li, F. Wang, Z. Wang, J. Mater. Sci.-Mater. Electron. 25, 3664–3673 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, X. Wu, W. Zhang, C. Luo, J. Li, Y. Wang, Mater. Res. Bull. 98, 59–63 (2018)CrossRefGoogle Scholar
  4. 4.
    K. Chen, C. Xiang, L. Li, H. Qian, Q. Xiao, F. Xu, J. Mater. Chem. 22, 6449–6455 (2012)CrossRefGoogle Scholar
  5. 5.
    B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, G. Xu, J. Alloy. Compd. 728, 1065–1075 (2017)CrossRefGoogle Scholar
  6. 6.
    M.H. Flaifel, S.H. Ahmad, M.H. Abdullah, R. Rasid, A.H. Shaari, A.A. El-Saleh, S. Appadu, Compos. Sci. Technol. 96, 103–108 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Oyharcabal, T. Olinga, M.P. Foulc, S. Lacomme, E. Gontier, V. Vigneras, Compos. Sci. Technol. 74, 107–112 (2013)CrossRefGoogle Scholar
  8. 8.
    Y.J. Chen, M.S. Cao, T.H. Wang, Q. Wan, Appl. Phys. Lett. 84, 3367–3369 (2004)CrossRefGoogle Scholar
  9. 9.
    H.M. Mesfin, A.C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, C. Bailly, Appl. Phys. Lett. 105, (2014)Google Scholar
  10. 10.
    Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, ACS Appl. Mater. Inter. 6, 12997–13006 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Shah, Y.H. Wang, H. Huang, L. Zhang, D.X. Wang, L. Zhou, Y.P. Duan, X.L. Dong, Z.D. Zhang, Compos. Struct. 131, 1132–1141 (2015)CrossRefGoogle Scholar
  12. 12.
    V.G. Harris, IEEE Trans. Magn. 48, 1075–1104 (2012)CrossRefGoogle Scholar
  13. 13.
    H.B. Yang, T. Ye, Y. Lin, M. Liu, Appl. Surf. Sci. 357, 1289–1293 (2015)CrossRefGoogle Scholar
  14. 14.
    V. Sunny, P. Kurian, P. Mohanan, P.A. Joy, M.R. Anantharaman, J. Alloy. Compd. 489, 297–303 (2010)CrossRefGoogle Scholar
  15. 15.
    T.H. Ting, R.P. Yu, Y.N. Jau, Mater. Chem. Phys. 126, 364–368 (2011)CrossRefGoogle Scholar
  16. 16.
    W. Hu, L. Wang, Q. Wu, H. Wu, J. Mater. Sci.-Mater. Electron. 25, 5302–5308 (2014)CrossRefGoogle Scholar
  17. 17.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668–677 (2003)CrossRefGoogle Scholar
  18. 18.
    J. Ryu, J. Choi, D.H. Lim, H.L. Seo, S.Y. Lee, Y. Sohn, J.H. Park, J.H. Jang, H.J. Kim, S.A. Hong, P. Kim, S.J. Yoo, Appl. Catal. B-Environ. 174, 526–532 (2015)CrossRefGoogle Scholar
  19. 19.
    Y.Y. Sun, W.H. Zhang, H.L. Yu, C.L. Hou, D.S. Li, Y.H. Zhang, Y.Q. Liu, J. Alloy. Compd. 638, 182–187 (2015)CrossRefGoogle Scholar
  20. 20.
    T.T. Chen, F. Deng, J. Zhu, C.F. Chen, G.B. Sun, S.L. Ma, X.J. Yangm, J. Mater. Chem. 22, 15190–15197 (2012)CrossRefGoogle Scholar
  21. 21.
    Y.F. Tang, Y.Y. Liu, S.X. Yu, S.C. Mu, S.H. Xiao, Y.F. Zhao, F.M. Gao, J. Power Sources 256, 160–169 (2014)CrossRefGoogle Scholar
  22. 22.
    R.M. Walser, W. Win, P.M. Valanju, IEEE Trans. Magn. 34, 1390–1392 (1998)CrossRefGoogle Scholar
  23. 23.
    L.J. Deng, P.H. Zhou, J.L. Xie, L. Zhang, J. Appl. Phys. 101, 103916 (2007)CrossRefGoogle Scholar
  24. 24.
    G.Z. Xie, X.L. Song, B.S. Zhang, D.M. Tang, Q. Bian, H.X. Lu, Powder Technol. 210, 220–224 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, ACS Appl. Mater. Inter. 9, 20038–20045 (2017)CrossRefGoogle Scholar
  26. 26.
    D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Carbon 77, 756–774 (2014)CrossRefGoogle Scholar
  27. 27.
    Q.F. Li, S.Q. Yan, X. Wang, Z.K. Feng, Y.J. Chen, V.G. Harris, IEEE Trans. Magn. 51, 2802404 (2015)Google Scholar
  28. 28.
    L. He, H.B. Yang, D. Zhou, Y.J. Niu, F. Xiang, H. Wang, J. Phys. D Appl. Phys. 46, 125003 (2013)CrossRefGoogle Scholar
  29. 29.
    P.P. Chang, L. He, D.D. Wei, H. Wang, J. Eur. Ceram. Soc. 36, 2519–2524 (2016)CrossRefGoogle Scholar
  30. 30.
    D.B. Hovis, K.T. Faber, Scr. Mater. 44, 2525–2529 (2001)CrossRefGoogle Scholar
  31. 31.
    Y.Y. Ren, L. Yang, L.D. Wang, T.T. Xu, G.L. Wu, H.J. Wu, Powder Technol. 281, 20–27 (2015)CrossRefGoogle Scholar
  32. 32.
    L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C.R. Deng, S. Matitsine, Int. Mater. Rev. 58, 203–259 (2013)CrossRefGoogle Scholar
  33. 33.
    B.J.P. Adohi, V. Laur, B. Haidar, C. Brosseau, Appl. Phys. Lett. 104, 082902 (2014)Google Scholar
  34. 34.
    M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge, W.A. Hines, J.I. Budnick, G.W. Taylor, Appl. Phys. Lett. 80, 4404–4406 (2002)CrossRefGoogle Scholar
  35. 35.
    P.B. Liu, Y. Huang, X. Zhang, Compos. Sci. Technol. 107, 54–60 (2015)CrossRefGoogle Scholar
  36. 36.
    J.P. Calame, J. Appl. Phys. 99, 084101 (2006)CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater. 27, 2049–2053 (2015)CrossRefGoogle Scholar
  38. 38.
    W. She, H. Bi, Z. Wen, Q. Liu, X. Zhao, J. Zhang, R. Che, ACS Appl. Mater. Int. 8, 9782–9789 (2016)CrossRefGoogle Scholar
  39. 39.
    L.S. Fu, J.T. Jiang, C.Y. Xu, L. Zhen, Crystengcomm. 14, 6827–6832 (2012)CrossRefGoogle Scholar
  40. 40.
    X. Wang, R. Gong, H. Luo, Z. Feng, J. Alloy. Compd. 480, 761–764 (2009)CrossRefGoogle Scholar
  41. 41.
    J. Huang, Y. Qin, J. Li, X. Jiang, F. Ma, J. Nanosci. Nanotechnol. 8, 3967–3972 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Automation and Information EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations