Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor

  • Guangsheng Fu
  • Qiang Li
  • Jianglin Ye
  • JunJian Han
  • Jiaqi Wang
  • Lei Zhai
  • Yanwu Zhu


The plant waste pomelo peels are used as carbon precursors to fabricate nitrogen-doped hierarchical porous carbon. The sample PC600 is fabricated at mild calcination temperature of 600 °C, which has nitrogen content of as high as 4.47% and hierarchical pores with a BET surface area of 1104 m2 g−1. The symmetric supercapacitor based on PC600//PC600 electrodes exhibits excellent electrochemical performance benefiting from both the electric double-layer capacitance and pseudocapacitance of PC600. In 1 M H2SO4 electrolyte, this supercapacitor delivers gravimetric capacitance of 208.7 F g−1, volumetric capacitance of 219.3 F cm−3, and energy density of 7.3 Wh kg−1 at a current density of 1 A g−1. Furthermore, the extraordinary energy density of 21.6 Wh kg−1 at 1 A g−1 and 17.1 Wh kg−1 at 20 A g−1 are obtained in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) electrolyte. The suitable calcination process can make the contents of nitrogen atoms and pores structures in PC600 to achieve an optimal combination, leading to improved electrochemical performance.



Authors appreciate financial support from the China Government 1000 Plan Talent Program, China MOE NCET Program, Natural Science Foundation of China (51322204), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120111120009) and Fundamental Research Funds for the Central Universities (WK2060140014, WK2060140017, 2013HGXJ0199, J2014HGXJ0092).


  1. 1.
    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)CrossRefGoogle Scholar
  2. 2.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  3. 3.
    G. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  4. 4.
    Z.N. Yu, M. McInnis, J. Calderon, S. Seal, L. Zhai, J. Thomas, Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nano Energy. 11, 611–620 (2015)CrossRefGoogle Scholar
  5. 5.
    R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11, 5293–5308 (2017)CrossRefGoogle Scholar
  6. 6.
    P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.C. Liu, B.B. Huang, X.X. Lin, Z.L. Xie, Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J. Mater. Chem. A. 5, 13009–13018 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Xu, Z.Q. Tan, W.C. Zeng, G.X. Chen, S.L. Wu, Y. Zhao, K. Ni, Z.C. Tao, M. Ikram, H.X. Ji, Y.W. Zhu, A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28, 5222–5228 (2016)CrossRefGoogle Scholar
  9. 9.
    X. Du, L. Wang, W. Zhao, Y. Wang, T. Qi, C.M. Li, Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors. J. Power Sources 323, 166–173 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H.L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Wang, A. Stein, Morphology control of carbon, silica, and carbon/silica nanocomposites: from 3D ordered macro-/mesoporous monoliths to shaped mesoporous particles. Chem. Mater. 20, 1029–1040 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Nishihara, T. Kyotani, Energy storage: templated nanocarbons for energy storage. Adv. Mater. 24, 4473–4498 (2012)CrossRefGoogle Scholar
  13. 13.
    C.O. Ania, V. Khomenko, E.R. Pinero, J.B. Parra, F. Beguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv. Funct. Mater. 17, 1828–1836 (2007)CrossRefGoogle Scholar
  14. 14.
    Y.J. Kim, Y. Abe, T. Yanaglura, K.C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M.S. Dresselhaus, Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon. 45, 2116–2125 (2007)CrossRefGoogle Scholar
  15. 15.
    K. Jurewicz, K. Babel, R. Pietrzak, S. Delpeux, H. Wachowska, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. Carbon. 44, 2368–2375 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Dutta, A. Bhaumik, C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Gao, J.Y. Qu, Z.B. Zhao, Z.Y. Wang, J.S. Qiu, Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochim. Acta. 190, 1134–1141 (2016)CrossRefGoogle Scholar
  18. 18.
    B. Liu, Y.J. Liu, H.B. Chen, M. Yang, H.M. Li, Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J. Power Sources 341, 309–317 (2017)CrossRefGoogle Scholar
  19. 19.
    Y.W. Ma, J. Zhao, L.R. Zhang, Y. Zhao, Q.L. Fan, X.A. Li, Z. Hu, W. Huang, The production of carbon microtubes by the carbonization of catkins and their use in the oxygen reduction reaction. Carbon 49, 5292–5297 (2011)CrossRefGoogle Scholar
  20. 20.
    S.J. Song, F.W. Ma, G. Wu, D. Ma, W.D. Geng, J.F. Wan, Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3, 18154–18162 (2015)CrossRefGoogle Scholar
  21. 21.
    R.C. Claudia, S. Christoph, P. Stefano, B. Andrea, Microporous carbonaceous materials prepared from biowaste for supercapacitor application. Electrochim. Acta 206, 452–457 (2016)CrossRefGoogle Scholar
  22. 22.
    Y.Q. Zhang, X. Liu, S.L. Wang, S.X. Dou, L. Li, Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J. Mater. Chem. A 4, 10869–10877 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Chen, D.F. Yu, G.Y. Zhao, B.S. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27, 377–389 (2016)CrossRefGoogle Scholar
  24. 24.
    G.F. Ma, J.D. Li, K.J. Sun, H. Peng, E.K. Feng, Z.Q. Lei, Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode. J. Solid State Electrochem. 21, 525–535 (2017)CrossRefGoogle Scholar
  25. 25.
    S.Y. Gao, X.G. Li, L.Y. Li, X.J. Wei, A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy. 33, 334–342 (2017)CrossRefGoogle Scholar
  26. 26.
    Q.H. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F.Y. Kang, Q.H. Yang, A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6, 13831–13837 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Peng, J.W. Lang, S. Xu, X.L. Wang, Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Adv. 4, 54662–54667 (2014)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Wang, B.H. Hou, H.Y. Lu, C.L. Lu, X.L. Wu, Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors. ChemistrySelect 1, 1441–1446 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Li, W.L. Liu, D. Xiao, X.H. Wang, Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl. Surf. Sci. 416, 918–924 (2017)CrossRefGoogle Scholar
  30. 30.
    Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, Carbon-based supercapacitors produced by activation of grapheme. Science. 332, 1537–1541 (2011)CrossRefGoogle Scholar
  31. 31.
    Z.S. Li, J.H. Che, B.L. Li, W. Luo, Z.S. Liu, D.H. Li, Preparation of carbon nanospheres/Fe3O4 composites and their supercapacitor performances. J. Mater. Sci.: Mater. Electron. 28, 17388–17396 (2017)Google Scholar
  32. 32.
    P.S. Yang, L. Ma, M.Y. Gan, Y. Lei, X.L. Zhang, M. Jin, G. Fu, Preparation and application of PANI/N-doped porous carbon under the protection of ZnO for supercapacitor electrode. J. Mater. Sci.: Mater. Electron. 28, 7333–7342 (2017)Google Scholar
  33. 33.
    Z. Fan, D. Qi, Y. Xiao, J. Yan, T. Wei, One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Mater. Lett. 101, 29–32 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Han, J.H. Kwon, J.W. Lee, J.H. Lee, K.C. Roh, An effective approach to preparing partially graphitic activated carbon derived from structurally separated pitch pine biomass. Carbon 118, 431–437 (2017)CrossRefGoogle Scholar
  35. 35.
    I.A. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 164, 473–482 (2009)CrossRefGoogle Scholar
  36. 36.
    X.L. Su, M.Y. Cheng, L. Fu, J.H. Yang, X.C. Zheng, X.X. Guan, Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins. J. Power Sources. 362, 27–38 (2017)CrossRefGoogle Scholar
  37. 37.
    W. Wang, W.Y. Liu, Y.X. Zeng, Y. Han, M.H. Yu, X.H. Lu, Y.X. Tong, A novel exfoliation strategy to signifi cantly boost the energy storage capability of commercial carbon cloth. Adv. Mater. 27, 3572–3578 (2015)CrossRefGoogle Scholar
  38. 38.
    Y.Z. Ma, Y. Guo, C. Zhou, C.Y. Wang, Biomass-derived dendritic-like porous carbon aerogels for supercapacitors. Electrochim. Acta 210, 897–904 (2016)CrossRefGoogle Scholar
  39. 39.
    Y.F. Song, J. Yang, K. Wang, S. Haller, Y.G. Wang, C.X. Wang, Y.Y. Xia, In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon 96, 955–964 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Jain, C.H. Xu, S. Jayaraman, R. Balasubramanian, J.Y. Lee, M.P. Srinivasan, Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater. 218, 55–61 (2015)CrossRefGoogle Scholar
  41. 41.
    L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S.Y. Qiao, M. Antonietti, M.M. Titirici, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 22, 5202–5206 (2010)CrossRefGoogle Scholar
  42. 42.
    A.B. Fuertes, M. Sevilla, High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performanceionic liquid-based supercapacitors. Carbon. 94, 41–52 (2015)CrossRefGoogle Scholar
  43. 43.
    E. Redondo, J.C. González, E. Goikolea, J. Ségalini, R. Mysyk, Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim. Acta 160, 178–184 (2015)CrossRefGoogle Scholar
  44. 44.
    E. Redondo, W.Y. Tsai, B. Daffos, P.L. Taberna, P. Simon, E. Goikolea, R. Mysyk, Outstanding room-temperature capacitance of biomass-derived microporous carbons in ionic liquid electrolyte. Electrochem. Commun. 79, 5–8 (2017)CrossRefGoogle Scholar
  45. 45.
    G.A. Ferrero, A.B. Fuertes, M. Sevilla, From soybean residue to advanced supercapacitors. Sci. Rep. 5, 16618 (2015)CrossRefGoogle Scholar
  46. 46.
    K.L. Sun, S.S. Yu, Z.L. Hu, Z.H. Li, G.T. Lei, Q.Z. Xiao, Y.H. Ding, Oxygen-containing hierarchically porous carbon materials derived from wild jujube pit for high-performance supercapacitor. Electrochim. Acta. 231, 417–428 (2017)CrossRefGoogle Scholar
  47. 47.
    E. Raymundo-Pinero, M. Cadek, F. Beguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19, 1032–1039 (2009)CrossRefGoogle Scholar
  48. 48.
    H. Li, D. Yuan, C.H. Tang, S.X. Wang, J.T. Sun, Z.B. Li, T. Tang, F.K. Wang, H. Gong, C.B. He, Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon. 100, 151–157 (2016)CrossRefGoogle Scholar
  49. 49.
    C.L. Long, X. Chen, L.L. Jiang, L.J. Zhi, Z.J. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12, 141–151 (2015)CrossRefGoogle Scholar
  50. 50.
    D.Y. Guo, X.A. Chen, Z.P. Fang, Y.F. He, C. Zheng, Z. Yang, K.Q. Yang, Y. Chen, S.M. Huang, Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochim. Acta 176, 207–214 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic Science and Applied PhysicsHefei University of TechnologyHefeiChina
  2. 2.Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  3. 3.NanoScience Technology Center and Department of ChemistryUniversity of Central FloridaOrlandoUSA

Personalised recommendations