Investigation on structure and thermoelectric properties in p-type Bi0.48Sb1.52Te3 via PbTe incorporating

Article

Abstract

Bismuth telluride alloys are the most commercially used thermoelectric materials. Herein, Bi0.48Sb1.52Te3 + x wt% PbTe (x = 0, 0.05, 0.1, and 0.15) composites have been prepared by the zone-melting method. The microstructure and thermoelectric properties of the composites are investigated. It is found that PbTe addition could effectively improve the electrical properties of Bi0.48Sb1.52Te3. As a result, a very large power factor of 55.5 µW cm−1 K−2 is achieved at 300 K for x = 0.05. Compared with the matrix, the largest figure of merit ZT for the composites shows slight enhancement, and the average figure of merit ZT ave is obviously improved. This work indicated that a trace amount of PbTe can effectively improve the thermoelectric performance of Bi0.48Sb1.52Te3.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11404350, 11404348, 51702334, and 11234012), the Zhejiang Provincial Science Foundation for Distinguished Young Scholars (LR16E020001), Natural Science Foundation of Zhejiang Province (LY18A040008 and LY18E020017), and the Ningbo Science and Technology Innovation Team (2014B82004).

References

  1. 1.
    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)CrossRefGoogle Scholar
  2. 2.
    W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, G.J. Snyder, Thinking like a chemist: intuition in thermoelectric materials. Angew. Chem. Int. Ed. 55(24), 6826–6841 (2016)CrossRefGoogle Scholar
  3. 3.
    T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 1605884 (2017)Google Scholar
  4. 4.
    W. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. Pei, Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Adv. Mater. 1605887 (2017)Google Scholar
  5. 5.
    S. Lin, W. Li, Z. Chen, J. Shen, B. Ge, Y. Pei, Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7, 10287 (2016)CrossRefGoogle Scholar
  6. 6.
    F. Yu, J. Zhang, D. Yu, J. He, Z. Liu, B. Xu, Y. Tian, Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk. J. Appl. Phys. 105(9), 094303 (2009)CrossRefGoogle Scholar
  7. 7.
    W. Xie, X. Tang, Y. Yan, Q. Zhang, T.M. Tritt, High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105(11), 113713 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Chen, D.W. Liu, B.P. Zhang, J.F. Li, Enhanced thermoelectric properties obtained by compositional optimization in p-Type BixSb2–xTe3 fabricated by mechanical alloying and spark plasma sintering. J. Electron. Mater. 40(5), 942–947 (2011)CrossRefGoogle Scholar
  9. 9.
    T. Zhang, Q. Zhang, J. Jiang, Z. Xiong, J. Chen, Y. Zhang, W. Li, G. Xu, Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO. Appl. Phys. Lett. 98(2), 022104 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008)CrossRefGoogle Scholar
  11. 11.
    J.P. Ge, Y.D. Li, Ultrasonic synthesis of nanocrystals of metal selenides and tellurides. J. Mater. Chem. 13(4), 911–915 (2003)CrossRefGoogle Scholar
  12. 12.
    J.J. Shen, Z.Z. Yin, S.H. Yang, C. Yu, T.J. Zhu, X.B. Zhao, Improved thermoelectric performance of p-type bismuth antimony telluride bulk alloys prepared by hot forging. J. Electron. Mater. 40(5), 1095–1099 (2011)CrossRefGoogle Scholar
  13. 13.
    J.Y. Yang, X.A. Fan, R.G. Chen, W. Zhu, S.Q. Bao, X.K. Duan, Consolidation and thermoelectric properties of n-type bismuth telluride based materials by mechanical alloying and hot pressing. J. Alloy. Compd. 416(1), 270–273 (2006)CrossRefGoogle Scholar
  14. 14.
    Z. Zhang, P.A. Sharma, E.J. Lavernia, N. Yang, Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering. J. Mater. Res. 26(3), 475–484 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Jiang, L. Chen, S. Bai, Q. Yao, Q. Wang, Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scr. Mater. 52(5), 347–351 (2005)CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, L. Li, Q. Tan, J.F. Li, Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering. J. Alloy. Compd. 590, 362–367 (2014)CrossRefGoogle Scholar
  17. 17.
    K. Park, S.W. Nam, C.H. Lim, Thermoelectric properties of p-type Bi0.5Sb1.5Te3 for solid-state cooling devices. Intermetallics 18(9), 1744–1749 (2010)CrossRefGoogle Scholar
  18. 18.
    D. Suh, S. Lee, H. Mun, S.H. Park, K.H. Lee, S.W. Kim, J.Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Xie, J. Xu, G. Liu, Z. Liu, H. Shao, X. Tan, J. Jiang, H. Jiang, Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite. Energies 9(4), 236 (2016)CrossRefGoogle Scholar
  20. 20.
    L.D. Zhao, B.P. Zhang, J.F. Li, M. Zhou, W.S. Liu, J. Liu, Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloy. Compd. 455(1), 259–264 (2008)CrossRefGoogle Scholar
  21. 21.
    T.J. Zhu, Y.Q. Liu, X.B. Zhao, Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes. Mater. Res. Bull. 43(11), 2850–2854 (2008)CrossRefGoogle Scholar
  22. 22.
    I.G. Austin, The optical properties of bismuth telluride. Proc. Phys. Soc. 72(4), 545 (1958)CrossRefGoogle Scholar
  23. 23.
    H. Köhler, Non-parabolicity of the highest valence band of Bi2Te3 from Shubnikov-de Haas effect. Phys. Status Solidi B 74(2), 591–600 (1976)CrossRefGoogle Scholar
  24. 24.
    F. Hao, P. Qiu, Q. Song, H. Chen, P. Lu, D. Ren, X. Shi, L. Chen, Roles of Cu in the enhanced thermoelectric properties in Bi.0.5Sb1. 5Te3. Materials 10(3), 251 (2017)CrossRefGoogle Scholar
  25. 25.
    T. Zhang, J. Jiang, Y. Xiao, Y. Zhai, S. Yang, G. Xu, In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance. ACS Appl. Mater. Interface 5(8), 3071–3074 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Jiang, X.A. Fan, B. Feng, J. Hu, Q. Xiang, G. Li, Y. Li, Z. He, Thermal stability of p-type polycrystalline Bi2Te3-based bulks for the application on thermoelectric power generation. J. Alloy. Compd. 692, 885–891 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Zhang, M. de la Mata, Z. Li, F.J. Belarre, J. Arbiol, K.A. Khor, D. Poletti, B. Zhu, Q. Yan, Q. Xiong, Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy 30, 630–638 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Xu, M.T. Agne, T. Feng, T.C. Chasapis, X. Ruan, Y. Zhou, H. Zheng, J.H. Bahk, M.G. Kanatzidis, G.J. Snyder, Y. Wu, Nanocomposites from solution-synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low-medium temperatures (500–600 K). Adv. Mater. 29(10) (2017)Google Scholar
  29. 29.
    Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen, Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 25(6), 966–976 (2015)CrossRefGoogle Scholar
  30. 30.
    Z.J. Xu, L.P. Hu, P.J. Ying, X.B. Zhao, T.J. Zhu, Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater. 84, 385–392 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Xiao, G. Chen, H. Qin, M. Wu, Z. Xiao, J. Jiang, J. Xu, H. jiang, G. Xu, Enhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 addition. J. Mater. Chem. A 2(22), 8512–8516 (2014)CrossRefGoogle Scholar
  32. 32.
    L.P. Hu, T.J. Zhu, Y.G. Wang, H.H. Xie, Z.J. Xu, X.B. Zhao, Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 6(2), e88 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23(35), 4317–4323 (2013)CrossRefGoogle Scholar
  34. 34.
    G. Zheng, X. Su, T. Liang, Q. Lu, Y. Yan, C. Uher, X. Tang, High thermoelectric performance of mechanically robust n-type Bi2Te3–xSex prepared by combustion synthesis. J. Mater. Chem. A 3(12), 6603–6613 (2015)CrossRefGoogle Scholar
  35. 35.
    Z.J. Xu, L.P. Hu, P.J. Ying, X.B. Zhao, T.J. Zhu, Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2 Te3 thermoelectric materials by hot deformation. Acta Mater. 84, 385–392 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of PhysicsJinan UniversityGuangzhouChina
  2. 2.Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina

Personalised recommendations