Advertisement

Enhanced efficiency in dye-sensitized solar cells with La(OH)3:Yb3+/Er3+ and large particles scatting layer hybrid double photoanodes

  • Zhen Hu
  • Haiyong Guo
  • Li Zhao
  • Yadan Wu
  • Shimin Wang
  • Li Wan
Article
  • 108 Downloads

Abstract

A double-layer composite film (DLCF) that consists of upconversion composite La(OH)3:Er3+/Yb3++P25 (UC + P25) as underlayer and large TiO2 spheres (LS-TiO2) as overlayer is designed as the photoelectrode of dye-sensitized solar cells (DSSCs). The upconversion luminescent material La(OH)3:Er3+/Yb3+ can convert near-infrared region to visible light to improve the light absorption, and LS-TiO2 has been used as light-scattering layer to increase the optical length in the film and enhance light harvesting. The DLCF with lower absorbed dye achieved the highest conversion efficiency due to the synergistic effect of the upconversion luminescent layer and the light-scattering layer, and with an optimum mixing ratio, a conversion efficiency of 9.24% is attained, which is a significant improvement of 68.3% compared with the pure P25 film photoelectrode.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572072).

References

  1. 1.
    J. Song, G.R. Li, C.Y. Wu, X.P. Gao, J Power Sources 266, 464 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Dinari, M.M. Momeni, M. Goudarzirad, J. Mater. Sci. 51, 2964 (2016)CrossRefGoogle Scholar
  3. 3.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, S. Afr. J. Chem. 70, 44 (2017)Google Scholar
  4. 4.
    G.T. Dai, L. Zhao, J. Li, L. Wan, F. Hu, Z. Xu, B.H. Dong, H.B. Lu, S.M. Wang, J.G. Yu, J. Colloid. Interf. Sci. 365, 46 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Yu, Y. Yang, R. Fan, P. Wang, Y. Dong, Nanoscale 8, 4173 (2016)CrossRefGoogle Scholar
  6. 6.
    G. Liang, Z. Zhong, S. Qu, S. Wang, K. Liu, J. Wang, J. Mater. Sci. 48, 6377 (2013)CrossRefGoogle Scholar
  7. 7.
    B. O’Regan, M. Gratzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  8. 8.
    Y.Q. Lv, H. Zhang, C. Yang, W.T. Zhu, X.F. Zhou, J. Mater. Sci. 21, 16493 (2017)Google Scholar
  9. 9.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Nat. Chem. 6, 242 (2014)CrossRefGoogle Scholar
  10. 10.
    W. Hu, P. Yu, Z. Zhang, W. Shen, M. Li, R. He, J. Mater. Sci. 52, 1235 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Zhao, C. Zhong, Y.L. Wang, S.M. Wang, B.H. Dong, L. Wan, J. Power Sources. 292, 49 (2015)CrossRefGoogle Scholar
  12. 12.
    Y.D. Zhang, X.M. Huang, D.M. Li, Y.H. Luo, Q.B. Meng, Sol. Energy Mater. Sol Cells 98, 417 (2012)CrossRefGoogle Scholar
  13. 13.
    Y.W. Wang, Y.H. Zhu, X.L. Yang, J.H. Shen, X.Q. Li, S.H. Qian, C.Z. Li, Electrochim. Acta 211, 92 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Li, L. Zhao, S.M. Wang, J.H. Hu, B.H. Dong, H.B. Lu, L.W.P. Wang, Mater. Res. Bull. 48, 2566 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Chen, W.Y. Fu, H.B. Yang, P. Sun, Y.Y. Zhang, L.R. Wang, W.Y. Zhao, X.M. Zhou, H. Zhao, Q. Jing, X.F. Qi, Y.X. Li, Electrochim. Acta 56, 919 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  17. 17.
    N.N. Yao, J.Z. Huang, K. Fu, X.L. Deng, M. Ding, S.W. Zhang, X.J. Xu, Rsc Adv. 6, 11880 (2016)CrossRefGoogle Scholar
  18. 18.
    S.H.A. Lee, N.M. Abrams, P.G. Hoertz, G.D. Barber, L.I. Halaoui, T.E. Mallouk, J. Phys. Chem. B 112, 14415 (2008)CrossRefGoogle Scholar
  19. 19.
    S.K. Balasingam, M. Lee, M.G. Kang, Y. Jun, Chem. Commun. 49, 1471 (2013)CrossRefGoogle Scholar
  20. 20.
    J.H. Wu, J.L. Wang, J.M. Lin, Z. Lan, Q.W. Tang, M.L. Huang, Y.F. Huang, L.Q. Fan, Q.B. Li, Z.Y. Tang, Adv. Energy Mater. 2, 78 (2012)CrossRefGoogle Scholar
  21. 21.
    M.D. Luoshan, L.H. Bai, C.H. Bu, X.L. Liu, Y.D. Zhu, K.M. Guo, R.H. Jiang, M.Y. Li, X.Z. Zhao, J. Power Sources. 307, 468 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Liang, Y. Liu, C. Bu, K. Guo, W. Sun, N. Huang, T. Peng, B. Sebo, M. Pan, W. Liu, S. Guo, X.Z. Zhao, Adv. Mater. 25, 2174 (2013)CrossRefGoogle Scholar
  23. 23.
    F.V.D. Rijke, H. Zijlmans, S. Li, T. Vail, A.K. Raap, R.S. Niedbala, H.J. Tanke, Nat. Biotechnol. 19, 273 (2001)CrossRefGoogle Scholar
  24. 24.
    A. Xia, M. Chen, Y. Gao, D.M. Wu, W. Feng, F.Y. Li, Biomaterials 33, 5394 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Kawamoto, R. Kanno, J. Qiu, J. Mater. Sci. 33, 63 (1998)CrossRefGoogle Scholar
  26. 26.
    P.Y. Yuan, Y.H. Lee, M.K. Gnanasammandhan, Z.P. Guan, Y. Zhang, Q.H. Xu, Nanoscale 4, 5132 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Zhang, S.W. Wang, T.J. Rong, L.D. Chen, J. Am. Ceram. Soc. 87, 1072 (2010)CrossRefGoogle Scholar
  28. 28.
    W.Q. Zou, C. Visser, J.A. Maduro, M.S. Pshenichnikov, J.C. Hummelen, Nat. Photonics. 6, 560 (2012)CrossRefGoogle Scholar
  29. 29.
    M.Q. Yu, Y. Qu, K. Pan, G.F. Wang, Y.D. Li, Sci. Chin. Mater. 60, 228 (2017)CrossRefGoogle Scholar
  30. 30.
    F.L. Meng, Y. Luo, Y.L. Zhou, J.W. Zhang, Y.Z. Zheng, G.Z. Cao, X. Tao, J. Power Sources 316, 207 (2016)CrossRefGoogle Scholar
  31. 31.
    G. Dai, L. Zhao, S.M. Wang, J.H. Hu, B.H. Dong, H.B. Lu, J. Li, J. Alloy Compd. 539, 264 (2012)CrossRefGoogle Scholar
  32. 32.
    J.L. Yang, Z.Y. Gao, L. Tian, P.F. Ma, D.P. Wu, L. Yang, Micro Nano Lett. 6, 737 (2011)CrossRefGoogle Scholar
  33. 33.
    J.Q. Luo, L. Gao, J. Sun, Y.Q. Liu, Rsc Adv. 2, 1884 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Jalali, R.S. Moakhar, A. Kushwaha, G.K.L. Goh, N. Riahi-Noori, S.A. Sadrnezhaad, Electrochim. Acta 169, 395 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Shi, L. Zhao, S.M. Wang, J. Li, B.H. Dong, Z.X. Xu, L. Wan, Mater. Res. Bull. 59, 370 (2014)CrossRefGoogle Scholar
  36. 36.
    Y.L. Guan, L.X. Song, Y.Y. Zhou, X. Yin, X.Y. Xie, J. Xiong, Appl. Phys. A 123, 193 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, J. Mater. Sci. 28, 14965 (2017)Google Scholar
  38. 38.
    R.V. Perrella, M.A. Schiavon, E. Pecoraro, S.J.L. Ribeiro, J.L. Ferrari, J. Lumin. 178, 226 (2016)CrossRefGoogle Scholar
  39. 39.
    X. Chen, W. Xu, H.W. Song, C. Chen, H.P. Xia, Y.S. Zhu, D.L. Zhou, S.B. Cui, Q.L. Dai, J.Z. Zhang, Acs Appl. Mater. Inter. 8, 9071 (2016)CrossRefGoogle Scholar
  40. 40.
    J.G. Yu, G.H. Wang, B. Cheng, M.H. Zhou, Appl. Catal. B 69, 171 (2007)CrossRefGoogle Scholar
  41. 41.
    Y.Z. Zheng, X. Tao, L.X. Wang, H. Xu, Q. Hou, W.L. Zhou, J.F. Chen, Chem. Mater. 22, 928 (2009)CrossRefGoogle Scholar
  42. 42.
    H.Y. Guo, Z. Hu, L. Zhao, L. Wan, Y.D. Wu, S.M. Wang, Rsc Adv. 7, 38506 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations