Simple preparation of graphene-decorated NiCo2O4 hollow nanospheres with enhanced performance for supercapacitor

  • Bolin Li
  • Qianqian Sun
  • Rongrong Yang
  • Dehao Li
  • Zesheng Li


Supercapacitor is a new kind of energy storage devices with characteristics of high power density, fast charge–discharge rate and long cycle life. In this paper, graphene-decorated NiCo2O4 hollow nanospheres (GE/NiCo2O4) were synthesized by a consecutive hydrothermal and sintering method for supercapacitor application. The structures and morphologies of the samples were characterized by XRD, SEM and TEM. The electrochemical properties of the electrodes were measured by CV, CDC and EIS. The testing results showed that the specific capacitance, rate capability and stability the GE/NiCo2O4 electrode are obviously improved in comparison to those of single NiCo2O4 electrode, which demonstrated that introducing graphene onto the surface of NiCo2O4 hollow nanospheres can produce high-performance composite electrode material for supercapacitor application.



Financial supports by the National Natural Science Foundation of China (21606052 and 21777034), Provincial Natural Science Foundation of Guangdong (2017A030313049), Excellent Young Teacher Training Project of Guangdong Province Education Department (YQ2015115), are gratefully acknowledged.


  1. 1.
    Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015)CrossRefGoogle Scholar
  2. 2.
    Z. Li, J. Che, B. Li, W. Luo, Z. Liu, D. Li, Preparation of carbon nanospheres/Fe3O4 composites and their supercapacitor performances. J. Mater. Sci. 28, 17388–17396 (2017)Google Scholar
  3. 3.
    Z. Li, Q. Liang, C. Yang, L. Zhang, B. Li, D. Li, Convenient preparation of nitrogen-doped activated carbon from Macadamia nutshell and its application in supercapacitor. J. Mater. Sci. 28, 13880–13887 (2017)Google Scholar
  4. 4.
    E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta. 192, 110–119 (2016)CrossRefGoogle Scholar
  5. 5.
    B. Li, Z. Li, L. Zhang, Z. Liu, D. Xiong, D. Li, Facile synthesis of polyaniline nanofibers/porous carbon microspheres composite for high performance supercapacitors. J. Taiwan Inst. Chem. Eng. 81, 465–471 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Liu, X. Wang, J. Gao, Y. Zhang, Q. Lu, M. Liu, Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors. Electrochim. Acta. 211, 183–192 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Gao, X. Wang, Y. Zhang, J. Liu, Q. Lu, M. Liu, Boron-doped ordered mesoporous carbons for the application of supercapacitors. Electrochim. Acta. 207, 266–274 (2016)CrossRefGoogle Scholar
  8. 8.
    Q. Zhao, X. Wang, C. Wu, J. Liu, H. Wang, J. Gao, Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method. J. Power Sources. 254, 10–17 (2014)CrossRefGoogle Scholar
  9. 9.
    Z. Li, B. Li, C. Liao, Z. Liu, D. Li, H. Wang, Q. Li, One-pot construction of 3-D graphene nanosheets/Ni3S2 nanoparticles composite for high-performance supercapacitors. Electrochim. Acta. 253, 344–356 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Yin, H. Zhang, J. Luo, M. Yao, W. Hu, High-boiling-point solvent synthesis of mesoporous NiCo2S4 with high specific surface area as supercapacitor electrode material. J. Mater. Sci. 28, 2093–2099 (2017)Google Scholar
  11. 11.
    Y. Zhang, Y. Sui, J. Qi, P. Hou, F. Wei, Y. He, Q. Meng, Z. Sun, Facile synthesis of NiCo2S4 spheres with granular core used as supercapacitor electrode materials. J. Mater. Sci. 728, 5686–5695 (2017)Google Scholar
  12. 12.
    L. Liu, Z. Niu, J. Chen, Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 45(15), 4340–4363 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Tokita, N. Yoshimoto, K. Fujii, M. Morita, Degradation characteristics of electric double-layer capacitors consisting of high surface area carbon electrodes with organic electrolyte solutions. Electrochim. Acta 209, 210–218 (2016)CrossRefGoogle Scholar
  14. 14.
    Z. Li, X. Hu, D. Xiong, B. Li, H. Wang, Q. Li, Facile synthesis of bicontinuous microporous/mesoporous carbon foam with ultrahigh specific surface area for supercapacitor application. Electrochim. Acta 219, 339–349 (2016)CrossRefGoogle Scholar
  15. 15.
    Z. Li, L. Zhang, B. Li, Z. Liu, Z. Liu, H. Wang, Q. Li, Convenient and large-scale synthesis of hollow graphene-like nanocages for electrochemical supercapacitor application. Chem. Eng. J. 313, 1242–1250 (2017)CrossRefGoogle Scholar
  16. 16.
    Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9(3), 729–762 (2016)CrossRefGoogle Scholar
  17. 17.
    X. Cao, Z. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7(6), 1850–1865 (2014)CrossRefGoogle Scholar
  18. 18.
    Z. Li, B. Li, Z. Liu, D. Li, H. Wang, Q. Li, One-pot construction of 3-D nitrogen-doped activated graphene-like nanosheets for high-performance supercapacitors. Electrochim. Acta 190, 378–387 (2016)CrossRefGoogle Scholar
  19. 19.
    B. Wang, Y. Qin, W. Tan, Y. Tao, Y. Kong, Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim. Acta 241, 1–9 (2017)CrossRefGoogle Scholar
  20. 20.
    A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci. 402, 245–253 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRefGoogle Scholar
  22. 22.
    H.R. Naderi, P. Norouzi, M.R. Ganjali, Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Appl. Surf. Sci. 366, 552–560 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Xiao, F. Qu, X. Wu, Ultrathin NiO nanoflakes electrode materials for supercapacitors. Appl. Surf. Sci. 360, 8–13 (2016)CrossRefGoogle Scholar
  24. 24.
    Q. Hu, Z. Gu, X. Zheng, X. Zhang, Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem. Eng. J. 304, 223–231 (2016)CrossRefGoogle Scholar
  25. 25.
    C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources. 226, 65–70 (2013)CrossRefGoogle Scholar
  26. 26.
    Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 1(1), 107–131 (2012)CrossRefGoogle Scholar
  27. 27.
    B. Cui, H. Lin, J.B. Li, X. Li, J. Yang, J. Tao, Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 18(9), 1440–1447 (2008)CrossRefGoogle Scholar
  28. 28.
    H.S. Jadhav, R.S. Kalubarme, C.N. Park, J. Kim, C.J. Park, Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity. Nanoscale. 6(17), 10071–10076 (2014)CrossRefGoogle Scholar
  29. 29.
    L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015)CrossRefGoogle Scholar
  30. 30.
    L.F. Hu, L.M. Wu, M.Y. Liao, X.H. Hu, X.S. Fang, Electrical transport properties of large, individual NiCo2O4 nanoplates. Adv. Funct. Mater. 22, 998–1004 (2012)CrossRefGoogle Scholar
  31. 31.
    M. Silambarasan, P.S. Ramesh, D. Geetha, Facile one-step synthesis, structural, optical and electrochemical properties of NiCo2O4 nanostructures. J. Mater. Sci. 28(1), 323–336 (2017)Google Scholar
  32. 32.
    R. Ding, L. Qi, M. Jia, H. Wang, Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 6(3), 1369–1376 (2014)CrossRefGoogle Scholar
  33. 33.
    H. Quan, B. Cheng, Y. Xiao, S. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016)CrossRefGoogle Scholar
  34. 34.
    E. Umeshbabu, G. Rajeshkhanna, P. Justin, G.R. Rao, Synthesis of mesoporous NiCo2O4-RGO by solvothermal method for charge storage applications. RSC Adv. 5, 66657–66666 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Yu, J. Chen, Y. Ma, J. Zhang, J. Liu, S. Li, Hydrothermal synthesis of NiCo2O4, nanowires/nitrogen-doped graphene for high-performance supercapacitor. Appl. Surf. Sci. 314, 1000–1006 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Liu, X. Li, J. Huang, J. Li, P. Zhou, J. Liu, X. Huang, Three-dimensional graphene-based nanocomposites for high energy density Li-ion batteries. J. Mater. Chem. A. 5, 5977–5994 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Zhu, Y. Li, S. Kang, X. Wei, P. Shen, One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. J. Mater. Chem. A. 2, 3142–3147 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Zhu, X. Pu, W. Song, Z. Wu, Z. Zhou, X. He, X. Ji, High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J. Alloy. Compd. 617, 988–993 (2014)CrossRefGoogle Scholar
  39. 39.
    Y. An, Z. Hu, B. Guo, N. An, Y. Zhang, Z. Li, H. Wu, Electrodeposition of honeycomb-shaped NiCo2O4 on carbon cloth as binder-free electrode for asymmetric electrochemical capacitor with high energy density. RSC Adv. 6(44), 37562–37573 (2016)CrossRefGoogle Scholar
  40. 40.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)CrossRefGoogle Scholar
  41. 41.
    B. Zhao, T. Wang, L. Jiang, K. Zhang, M.M. Yuen, J.B. Xu, C.P. Wong, NiO mesoporous nanowalls grown on RGO coated nickel foam as high-performance electrodes for supercapacitors and biosensors. Electrochim. Acta 192, 205–215 (2016)CrossRefGoogle Scholar
  42. 42.
    B.S. Singu, K.R. Yoon, Synthesis and characterization of MnO2-decorated graphene for supercapacitors. Electrochim. Acta 231, 749–758 (2017)CrossRefGoogle Scholar
  43. 43.
    C. Wan, Y. Jiao, J. Li, Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J. Mater. Chem. A. 5(8), 3819–3831 (2017)CrossRefGoogle Scholar
  44. 44.
    Z. Ye, F. Wang, C. Jia, K. Mu, M. Yu, Y. Lv, Z. Shao, Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chem. Eng. J. 330, 1166–1173 (2017)CrossRefGoogle Scholar
  45. 45.
    P. Ning, X. Duan, X. Ju, X. Lin, X. Tong, X. Pan, Q. Li, Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors. Electrochim. Acta. 210, 754–761 (2016)CrossRefGoogle Scholar
  46. 46.
    X. Hou, T. Peng, J. Cheng, Q. Yu, R. Luo, Y. Lu, Y. Luo, Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 10, 2570–2583 (2017)CrossRefGoogle Scholar
  47. 47.
    Z. Wang, L. Zhou, X.W. Lou, Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24(14), 1903–1911 (2012)CrossRefGoogle Scholar
  48. 48.
    J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. 125, 6545–6548 (2013)CrossRefGoogle Scholar
  49. 49.
    M. Arvand, A. Pourhabib, M. Asadi, Template-based synthesis of uniform bimetallic nickel-tin oxide hollow nanospheres as a new sensing platform for detection of erythrosine in food products. Sens. Actuators B Chem. 255, 1716–1725 (2018)CrossRefGoogle Scholar
  50. 50.
    Z. Zang, M. Wen, W. Chen, Y. Zeng, Z. Zu, X. Zeng, Strong yellow emission of ZnO hollow nanospheres fabricated using polystyrene spheres as templates. Mater. Des. 84, 418–421 (2015)CrossRefGoogle Scholar
  51. 51.
    H. Shen, Y. Long, X. Yang, N. Zhao, J. Xu, Facile fabrication of metal oxide hollow spheres using polydopamine nanoparticles as active templates. Polym. Int. 64(8), 986–991 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bolin Li
    • 1
    • 2
  • Qianqian Sun
    • 1
  • Rongrong Yang
    • 1
  • Dehao Li
    • 1
  • Zesheng Li
    • 1
  1. 1.Technology Research Center for Petrochemical Resource Cleaner Utilization of Guangdong Province, College of Chemical EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
  2. 2.College of Mechanical and Electrical EngineeringGuangdong University of Petrochemical TechnologyMaomingChina

Personalised recommendations