Effects of Zn/S ratios on the photoelectric properties of ZnS/microcrystalline graphene composites

  • Yun Lei
  • Zicong Jiang
  • Zheng Zhang


Microcrystalline graphite oxide was prepared by the Hummers method using the microcrystalline graphite as raw material. ZnS/microcrystalline graphene (ZnS/MGR) composites were synthesized by a solvothermal method using zinc acetate as zinc source, thiourea as sulfur source and microcrystalline graphite oxide as a carrier. The structure and morphology of the composites were characterized by XRD and SEM. The results show that the cubic ZnS nanoparticles with size of 50–100 nm are uniformly dispersed on the microcrystalline graphene sheets which offer an ideal platform for smaller ZnS nanoparticles and prevent the aggregation of ZnS nanoparticles. The effects of different Zn/S ratios on the photoelectric and electrochemical properties of ZnS/MGR were investigated. As the Zn/S ratio changes from 1: 1, 1: 2 to 1: 3, the photocurrent density first increases, reaches a maximum of 4.62 × 10−5A/cm2 at the Zn/S ratio of 1:2, and then decreases as the Zn/S ratio further decreases. The electrochemical impedance of ZnS/MGR reaches a minimum at the Zn/S ratio of 1:2, and the specific capacitance of ZnS/MGR at the same ratio reaches a maximum of 55.66F/g, which is about 180 times as large as that of pure ZnS.



The work was supported by National Natural Science Foundation of China No. 51204129.


  1. 1.
    M. Arvand, A.A. Mirroshandel, Biosens. Bioelectron. 96, 324 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Saravanan, E. Thiruma, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 177, 394 (2013)CrossRefGoogle Scholar
  3. 3.
    T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 371, 101 (2012)CrossRefGoogle Scholar
  4. 4.
    V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Mat. Sci. Eng. C-Mater. 32, 12 (2012)CrossRefGoogle Scholar
  5. 5.
    V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Mat. Sci. Eng. C-Mater. 31, 1062 (2011)CrossRefGoogle Scholar
  6. 6.
    R. Saravanan, M.M. Khan, F. Gracia, J.Q. Qin, V.K. Gupta, S. Arumainathan, Sci. Rep-UK. 6, 31641 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Mat. Sci. Eng. C-Mater. 33, 4725 (2013)CrossRefGoogle Scholar
  8. 8.
    R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, J. Mol. Liq. 221, 1029 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Saravanan, F. Gracia, M.M. Khan, V. Poornima, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 209, 374 (2015)CrossRefGoogle Scholar
  10. 10.
    R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, RSC Adv. 5, 34645 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Colloid Interface Sci. 452, 126 (2015)CrossRefGoogle Scholar
  12. 12.
    R. Saravanan, V.K. Gupta, J. Taiwan Inst. Chem. E. 45, 1910 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, J. Mol. Liq. 198, 409 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Saravanan, T. Prakash, V.K. Gupta, A. Stephen, J. Mol. Liq. 193, 160 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 181, 133 (2013)CrossRefGoogle Scholar
  16. 16.
    V.K. Gupta, A. Fakhri, M. Azad, S. Agarwal, J. Colloid Interf. Sci. 510, 95 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Wachau, J. Schulte, P. Agoston, F. Hubler, A. Steigert, R. Klenk, F. Hergert, H. Eschrich, V. Probst, Prog. Photovolt. 25, 696 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, V. Gapontsev, Opt. Mater. Express. 7, 2636 (2017)CrossRefGoogle Scholar
  19. 19.
    S.V. Mukhamale, P. Tabhane, A.A. Meshram, V.A. Tabhane, M. Kartha, Cryst. Growth Des. 16, 5501 (2016)CrossRefGoogle Scholar
  20. 20.
    W. Qin, D.S. Li, X.J. Zhang, D. Yan, B.W. Hu, L.K. Pan, Electrochim. Acta. 191, 435 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, RSC Adv. 5, 18438 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Jindal, S.M. Giripunje, Superlattice Microst. 100, 683 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Thangavel, K. Krishnamoorthy, S.J. Kim, G. Venugopal, J. Alloy. Compd. 683, 456 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Ramachandran, M. Saranya, P. Kollu, B.P.C. Raghupathy, S.K. Jeong, A.N. Grace, Electrochim. Acta. 178, 647 (2015)CrossRefGoogle Scholar
  25. 25.
    V.K. Gupta, A. Nayak, S. Agarwal, Environ. Eng. Res. 20, 1 (2015)CrossRefGoogle Scholar
  26. 26.
    T.A. Saleh, V.K. Gupta, Adv. Colloid Interface. 211, 93 (2014)CrossRefGoogle Scholar
  27. 27.
    V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adv. Colloid Interface. 193–194, 24 (2013)CrossRefGoogle Scholar
  28. 28.
    V.K. Gupta, T.A. Saleh, Environ. Sci. Pollut. Res. 20, 2828 (2013)CrossRefGoogle Scholar
  29. 29.
    T.A. Saleh, V.K. Gupta, Environ. Sci. Pollut. Res. 19, 1224 (2012)CrossRefGoogle Scholar
  30. 30.
    V.K. Gupta, S. Agarwal, T.A. Saleh, J. Hazard. Mater. 185, 17 (2011)CrossRefGoogle Scholar
  31. 31.
    T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 362, 337 (2011)CrossRefGoogle Scholar
  32. 32.
    N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, J. Colloid Interface Sci. 362, 457 (2011)CrossRefGoogle Scholar
  33. 33.
    H. Khani, M.K. Rofouei, P. Arab, V.K. Gupta, Z. Vafaei, J. Hazard. Mater. 183, 402 (2010)CrossRefGoogle Scholar
  34. 34.
    V.K. Gupta, S.K. Srivastava, D. Mohan, S. Sharma, Waste Manage. 17, 511 (1998)CrossRefGoogle Scholar
  35. 35.
    Y. Lei, Z. Zhang, C.Y. Fang, X. Bing, Int. J. Electrochem. Sci. 12, 9279 (2017)CrossRefGoogle Scholar
  36. 36.
    H.Y. Xian, T.J. Peng, H.J. Sun, J.D. Wang, J. Mater. Sci. Mater. Electron. 26, 242 (2015)CrossRefGoogle Scholar
  37. 37.
    C.Y. Fang, Z. Zhang, X. Bing, Y. Lei, J. Mater. Sci. Mater. Electron. 28, 19174 (2017)CrossRefGoogle Scholar
  38. 38.
    C. Sole, N.E. Drewett, F. Liu, A.M. Abdelkader, I.A. Kinloch, L.J. Hardwick, J. Electroanal. Chem. 753, 35 (2015)CrossRefGoogle Scholar
  39. 39.
    J. Mach, P. Prochazka, M. Bartosik, D. Nezval, J. Piastek, J. Hulva, V. Svarc, M. Konecny, L. Kormos, T. Sikola, Nanotechnology. 28, 415203 (2017)CrossRefGoogle Scholar
  40. 40.
    C. Zhang, X.L. Hao, C.X. Wang, N. Wei, T. Rabczuk, Sci. Rep-UK. 7, 41398 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Schoche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, F. Capasso, Appl. Surf. Sci. 421, 778 (2017)CrossRefGoogle Scholar
  42. 42.
    Y. Lei, F.F. Chen, J. Xu, Appl. Surf. Sci. 357, 155 (2015)CrossRefGoogle Scholar
  43. 43.
    Y.L. Qin, Z. Sun, W.W. Zhao, Z.Y. Liu, D.R. Ni, Z.Y. Ma, Appl. Phys. A. 123, 355 (2017)CrossRefGoogle Scholar
  44. 44.
    M.L. Mao, L. Jiang, L.C. Wu, M. Zhang, T.H. Wang, J. Mater. Chem. A. 3, 13384 (2015)CrossRefGoogle Scholar
  45. 45.
    M. Sookhakian, Y.M. Amin, R. Zakaria, W.J. Basirun, M.R. Mahmoudian, B. Nasiri-Tabrizi, S. Baradaran, M. Azarang, J. Alloy. Compd. 632, 201 (2015)CrossRefGoogle Scholar
  46. 46.
    L.H. Yu, H. Ruan, Y. Zheng, D.Z. Li, Nanotechnology. 24, 375601 (2013)CrossRefGoogle Scholar
  47. 47.
    S.G. Pan, X.H. Liu, J. Solid State Chem. 191, 51 (2012)CrossRefGoogle Scholar
  48. 48.
    X.P. Li, Y. N.Gao, L. Yu, L.Q. Zheng, J. Solid State Chem. 183, 1423 (2010)CrossRefGoogle Scholar
  49. 49.
    Y. Lei, J. Xu, R. Li, F.F. Chen, Ceram. Int. 41, 3158 (2015)CrossRefGoogle Scholar
  50. 50.
    E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, C.W. Siong, Ceram. Int. 41, 715 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Resources and Environmental EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations