Advertisement

High capacitance and long cycle-life of nitrogen doped reduced graphene oxide

  • P. Bharathidasan
  • S. Sridhar
  • P. Vishnu Vardhan
  • S. R. Sivakkumar
  • Dong-Won Kim
  • S. Devaraj
Article

Abstract

The quality of chemically synthesized few-layered graphene, which is known as reduced graphene oxide (RGO) depends on the oxidation of graphite, effective exfoliation of graphite oxide and complete reduction of graphene oxide. Herein, we report the preparation of nitrogen doped RGO by a modified Hummer’s method using potassium manganate along with potassium permanganate to achieve improved oxidation of graphite and a small amount of bovine serum albumin as a dispersant to avoid restacking of graphene sheets. Besides reducing the agglomeration of graphene layers, bovine serum albumin also serves as a nitrogen dopant. The quality of as-prepared nitrogen doped RGO is examined by morphological and structural studies. While microscopic studies confirm the formation of thin, well dispersed RGO sheets, X-ray photoelectron spectroscopic studies confirm the doping of nitrogen in RGO. A specific surface area of 286 m2 g−1 is obtained for nitrogen doped RGO, which is mainly contributed by the basal planes and ordered mesoporosity of RGO. The capacitance properties of as-prepared nitrogen doped RGO without any conductive additive are evaluated by cyclic voltammetry and galvanostatic charge–discharge cycling. A specific capacitance of 142 F g−1 obtained at a current density 1 A g−1 is almost twice the specific capacitance obtained for commercial graphene platelet aggregates (75 F g−1). The rate performance of as-prepared nitrogen doped RGO is comparable to that of commercial graphene platelet aggregates. It is also found that nitrogen doped RGO electrode can be charged and discharged for at least 2000 cycles without fade in the capacitance.

Notes

Acknowledgements

Financial support from Science and Engineering Research Board, Department of Science and Technology, India (SB/FT/CS-025/2014 & SB/FT/CS-007/2013) and University Grant Commission – Department of Atomic Energy Consortium for Scientific Research, India (CSR/Acctts/2015/1075) are gratefully acknowledged. We thank Dr. V. Ramanathan for Raman spectroscopic studies and SASTRA for infrastructural and instrumental facilities.

References

  1. 1.
    M.K. Kim, K.B. Kim, S.M. Park, K.C. Roh, Sci. Rep. 6, 21182 (2016)CrossRefGoogle Scholar
  2. 2.
    J.L. Xia, L.J.H. Chen, N.T. Tao, Nat. Nanotechnol. 4, 505 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Adv. Mater. 26, 849 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkie, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Huang, J. Liang, Y. Chen, Small 8, 1805 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)CrossRefGoogle Scholar
  7. 7.
    P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Curr. Opin. Colloid Interface Sci. 20, 329 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, Y. Chen, Nano Res. 3, 661 (2010)CrossRefGoogle Scholar
  9. 9.
    K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K.A. Kim, Nature 490, 192 (2012)CrossRefGoogle Scholar
  10. 10.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)CrossRefGoogle Scholar
  11. 11.
    B.C. Brodie, Philos. Trans. R. Soc. Lond. 149, 249 (1859)Google Scholar
  12. 12.
    W. Hummers, R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  13. 13.
    M. Naoki, K. Takuya, N. Yuta, Sci. Rep. 6, 21715 (2016)CrossRefGoogle Scholar
  14. 14.
    J.H. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. 46, 1112 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Zhao, S. Pei, W. Ren, L. Gao, H.M. Cheng, ACS Nano 4, 5245 (2010)CrossRefGoogle Scholar
  17. 17.
    Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, H. Zhang, ACS Nano 5, 5038 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Ahadian, M. Estili, V.J. Surya, J.R. Azcon, X. Liang, H. Shiku, M. Ramalingam, T. Matsue, Y. Sakka, H. Bae, K. Nakajima, Y. Kawazoe, Nanoscale 7, 6436 (2015)CrossRefGoogle Scholar
  19. 19.
    C.H. Wen, C. Indranil, D.G. Goodwin, H.W. Matthew, D.F. Howard, B. Dermont, R.G. Zepp, Environ. Sci. Technol. 6, 3435 (2015)Google Scholar
  20. 20.
    Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater. 2, 557 (1990)CrossRefGoogle Scholar
  21. 21.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)CrossRefGoogle Scholar
  22. 22.
    A.C. Ferrari, Solid State Commun. 143, 47 (2007)CrossRefGoogle Scholar
  23. 23.
    J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu, K.M. Thomas, Carbon 33, 1641 (1995)CrossRefGoogle Scholar
  24. 24.
    P.H. Matter, L. Zhang, U.S. Ozkan, J. Catal. 239, 83 (2006)CrossRefGoogle Scholar
  25. 25.
    S.R. Gajjela, K. Ananthanarayanan, C. Yap, M. Gratzel, P. Balaya, Energy Environ. Sci. 3, 838 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169 (2001)CrossRefGoogle Scholar
  27. 27.
    H. Zhang, T. Kuila, N.H. Kim, D.S. Yu, J.H. Lee, Carbon 69, 66 (2014)CrossRefGoogle Scholar
  28. 28.
    B.E. Conway, Electochemical Supercapacitors (Kluwer Academic Publishers/Plenum Press, New York, 1999), pp. 1–698CrossRefGoogle Scholar
  29. 29.
    J. Wang, B. Ding, L. Xu, L. Shen, H. Dou, X. Zhang, ACS Appl. Mater. Interfaces 7, 22284 (2015)CrossRefGoogle Scholar
  30. 30.
    S.S. Balaji, A. Elavarasan, M. Sathish, Electrochim. Acta 200, 37 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Xia, W. Guoxu, H. Zhang, Y. Yu, L. Liu, A. Chen, J. Nanopart. Res. 19, 254 (2017)CrossRefGoogle Scholar
  32. 32.
    B. Jiang, C. Tian, L. Wang, L. Sun, C. Chen, X. Nong, Y. Qiao, H. Fu, Appl. Surf. Sci. 258, 3438 (2012)CrossRefGoogle Scholar
  33. 33.
    P. Bharathidasan, D.W. Kim, S. Devaraj, S.R. Sivakkumar, Electrochim. Acta 204, 146 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Zheng, X.F. Zhou, H.L. Cao, G.H. Wang, Z.P. Liu, RSC Adv. 5, 10739 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Bharathidasan
    • 1
  • S. Sridhar
    • 1
  • P. Vishnu Vardhan
    • 1
  • S. R. Sivakkumar
    • 1
  • Dong-Won Kim
    • 2
  • S. Devaraj
    • 1
  1. 1.Department of Chemistry, Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and BiotechnologySASTRA Deemed UniversityThanjavurIndia
  2. 2.Department of Chemical EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations