Interfacial and electrical characteristics of tetragonal HfO2/Al2O3 multilayer grown on AlGaN/GaN

  • Duo Cao
  • Feng Liu
  • Xi Shi
  • Hui Shi
  • Li Zheng
  • Lingyan Shen
  • Xinhong Cheng
  • Yuehui Yu
  • Xiaolong Li
  • Wangzhou Shi


We report the study of HfO2/Al2O3 multilayer (HAOM) that is deposited on AlGaN/GaN heterostructure by plasma enhanced atomic layer deposition (PEALD). The properties and passivation effect of HAOM, sole Al2O3 and HfO2 films were investigated. After high-temperature rapid thermal annealing (RTA) of 850 °C, the formation of tetragonal phase in HAOM is presented. Al incorporates into HfO2 layers during RTA, which facilitates the formation of tetragonal HfO2. The HAOM film reveals an effective dielectric constant of ~ 30.2, a critical electric field of 7.6 MV/cm and leakage of only 6.8 × 10−4 mA/cm2 at gate bias of |Vg − Vfb| = 10 V. The HAOM insulating layer is shown to be effective in suppressing leakage current. In particular, the HAOM MIS diode current is reduced by both 6 orders of magnitude at negative bias of − 10 V and forward bias of 1.5 V compared with a conventional Schottky diode.



This work was sponsored by Shanghai Sailing Program (Grant No. 17YF1413900). The authors thank the staff of beam line BL14B1, Shanghai Synchrotron Radiation Facility, for the GIXRD measurements.


  1. 1.
    Y. Kobayashi, K. Kumakura, T. Akasaka, T. Makimoto, Nature 484, 223–227 (2012)CrossRefGoogle Scholar
  2. 2.
    S.B. -Driad, H. Maher, N. Defrance, V. Hoel, J.-C. De Jaeger, M. Renvoise, P. Frijlink, IEEE Electron Device Lett. 34, 36–38 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Shi, S. Feng, Y. Zhang, B. Shi, K. Liu, IEEE Electron Device Lett. 36, 321 (2015)CrossRefGoogle Scholar
  4. 4.
    D.J. Meyer, R. Bass, D.S. Katzer, D.A. Deen, S.C. Binari, K.M. Daniels, C.R. Eddy Jr., Solid-State Electron. 54, 1098–1104 (2010)CrossRefGoogle Scholar
  5. 5.
    G.H. Jessen, R.C. Fitch, J.K. Gillespie, G. Via, A. Crespo, D. Langley, D.J. Denninghoff, M. Trejo, E.R. Heller, IEEE Trans. Electron Devices 54, 2589–2597 (2007)CrossRefGoogle Scholar
  6. 6.
    H.B. Profijt, S.E. Potts, M.C.M. van de Sanden, W.M.M. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011)CrossRefGoogle Scholar
  7. 7.
    H.C. Lin, P.D. Ye, G.D. Wilk, Appl. Phys. Lett 87, 182904 (2005)CrossRefGoogle Scholar
  8. 8.
    J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, Y. Koide, J. Appl. Phys. 114, 084108 (2013)CrossRefGoogle Scholar
  9. 9.
    I.S. Jeon, J. Park, D. Eom, C.S. Hwang, H.J. Kim, C.J. Park, H.Y. Cho, J.-H. Lee, N.-I. Lee, H.-K. Kang, Jpn. J. Appl. Phys. 42, 1222 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Liu, E.F. Chor, L.S. Tan, Semicond. Sci. Technol. 22, 522–527 (2007)CrossRefGoogle Scholar
  11. 11.
    K.K. Curreem, P.F. Lee, K.S. Wong, J.Y. Dai, M.J. Zhou, J. Wang, Q. Li, Appl. Phys. Lett. 88, 182905 (2006)CrossRefGoogle Scholar
  12. 12.
    M.-H. Cho, Y.S. Roh, C.N. Whang, K. Jeong, H.J. Choi, S.W. Nam, D.-H. Ko, J.H. Lee, N.I. Lee, K. Fujihara, Appl. Phys. Lett. 81, 1071 (2002)CrossRefGoogle Scholar
  13. 13.
    C. Martínez-Domingo, X. Saura, A. Conde, D. Jiménez, E. Miranda, J.M. Rafí, F. Campabadal, J. Suñé, Microelectron. Eng. 88, 1380–1383 (2011)CrossRefGoogle Scholar
  14. 14.
    C.-K. Lee, E. Cho, H.-S. Lee, C.S. Hwang, S. Han, Phys. Rev. B 78, 012102 (2008)CrossRefGoogle Scholar
  15. 15.
    D. Cao, X. Cheng, Y. Yu, X. Li, C. Liu, D. Shen, S. Mändl, Appl. Phys. Lett. 103, 081607 (2013)CrossRefGoogle Scholar
  16. 16.
    P. Tsipas, S.N. Volkos, A. Sotiropoulos, S.F. Galata, Appl. Phys. Lett. 93, 082904 (2008)CrossRefGoogle Scholar
  17. 17.
    D.-Y. Cho, T.J. Park, K.D. Na, J.H. Kim, C.S. Hwang, Phys. Rev. B 78, 132102 (2008)CrossRefGoogle Scholar
  18. 18.
    T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Appl. Phys. Lett. 99, 102903 (2011)CrossRefGoogle Scholar
  19. 19.
    D.-Y. Cho, H.S. Jung, H.-H. Yu, J.H. Yoon, H.K. Kim, S.Y. Lee, S.H. Jeon, S. Han, J.H. Kim, T.J. Park, B.-G. Park, C.S. Hwang, Chem. Mater. 24, 3534–3543 (2012)CrossRefGoogle Scholar
  20. 20.
    E.E. Hoppe, C.R. Aita, M. Gajdardziska-Josifovska, Appl. Phys. Lett. 91, 203105 (2007)CrossRefGoogle Scholar
  21. 21.
    L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I.P. Smorchkova, S. Keller, S.P. DenBaars, U.K. Mishra, IEEE Electron Device Lett. 22, 457–459 (2001)CrossRefGoogle Scholar
  22. 22.
    Y.C. Kong, Y.D. Zheng, C.H. Zhou, S.L. Gu, R. Zhang, P. Han, Y. Shi, R.L. Jiang, Appl. Phys. A 84, 95–98 (2006)CrossRefGoogle Scholar
  23. 23.
    G. Lucovsky, H. Seo, J.P. Long, K.-B. Chung, R. Vasic, M. Ulrich, Appl. Surf. Sci. 255, 6443–6450 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Suri, C.J. Kirkpatrick, D.J. Lichtenwalner, V. Misra, Appl. Phys. Lett. 96, 042903 (2010)CrossRefGoogle Scholar
  25. 25.
    H.Y. Yu, M.F. Li, B.J. Cho, C.C. Yeo, M.S. Joo, D.-L. Kwong, J.S. Pan, C.H. Ang, J.Z. Zheng, S. Ramanathan, Appl. Phys. Lett. 81, 376 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Duo Cao
    • 1
  • Feng Liu
    • 1
  • Xi Shi
    • 1
  • Hui Shi
    • 1
  • Li Zheng
    • 2
  • Lingyan Shen
    • 2
  • Xinhong Cheng
    • 2
  • Yuehui Yu
    • 2
  • Xiaolong Li
    • 3
  • Wangzhou Shi
    • 1
  1. 1.Department of PhysicsShanghai Normal UniversityShanghaiChina
  2. 2.State Key Laboratory of Functional Materials for Informatics, SIMITChinese Academy of SciencesShanghaiChina
  3. 3.Shanghai Synchrotron Radiation FacilityShanghaiChina

Personalised recommendations