Preparation of Cu2ZnSnS4 thin films with high carrier concentration and high carrier mobility by optimized annealing

Article
  • 43 Downloads

Abstract

The Cu2ZnSnS4 (CZTS) thin film with both high carrier concentration of 3.10 × 1020 cm−3 and high mobility of 19.8 cm2/V/s was prepared with optimization of heat treatment technique. In this work, different heat treatment techniques have been applied for the as-deposited CZTS by electrodeposition method. The as-deposited CZTS thin films have suitable Cu-poor and Zn-rich chemical composition, determining the high carrier concentration. The grain boundaries were designed for enhancement of carrier mobility of the CZTS thin films. Multi-step annealing refined the grains and increased the area of the grain boundaries in the films, resulting in the slight decrease of carrier mobility. Based on multi-step annealing, long and narrow particles and the preferential orientation of the grain boundaries formed by the decrease of Ar flow rate in 550 °C annealing. With such structure, the direct transportation of the holes along the vicinity of the grain boundaries increased carrier mobility.

Notes

Acknowledgements

This work obtained the financial support from National Natural Science Foundation of China (Grant No. 51472020).

References

  1. 1.
    H. Zhou, W.-C. Hsu, H.-S. Duan, B. Bob, W. Yang, T.-B. Song, C.-J. Hsu, Y. Yang, CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ. Sci. 6, 2822 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134–3159 (2015)CrossRefGoogle Scholar
  3. 3.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 49). Prog. Photovolt. 25, 3–13 (2017)CrossRefGoogle Scholar
  4. 4.
    A.D. Collord, H.W. Hillhouse, Composition control and formation pathway of CZTS and CZTGS nanocrystal inks for kesterite solar cells. Chem. Mater. 27, 1855–1862 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013)CrossRefGoogle Scholar
  6. 6.
    Z. Li, Materials Physics (Chemical Industry Press, Beijing, 2015)Google Scholar
  7. 7.
    K. Ito, Copper Zinc Tin Sulfide Based Thin Film Solar Cell (Wiley, Chichester, 2015)Google Scholar
  8. 8.
    A. Singh, S. Singh, S. Levcenko, T. Unold, F. Laffir, K.M. Ryan, Compositionally tunable photoluminescence emission in Cu2ZnSn(S1–xSex)4 nanocrystals. Angew. Chem. 52, 9120–9124 (2013)CrossRefGoogle Scholar
  9. 9.
    C. Malerba, F. Biccari, C.L. Azanza Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, CZTS stoichiometry effects on the band gap energy. J. Alloys Compd. 582, 528–534 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Chen, L.-W. Wang, A. Walsh, X.G. Gong, S.-H. Wei, Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 101, 223901 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Tang, J. Liu, J. Ji, M. Dou, Z. Li, F. Wang, One-step electrodeposition for targeted off-stoichiometry Cu2ZnSnS4 thin films. Appl. Surf. Sci. 383, 253–260 (2016)CrossRefGoogle Scholar
  12. 12.
    S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.-H. Moon, J.H. Kim, J.Y. Lee, Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Sol. Energy Mater. Sol. Cells 95, 3202–3206 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Ge, J. Jiang, P. Yang, C. Peng, Z. Huang, S. Zuo, L. Yang, J. Chu, A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/Mo thin film solar cell. Sol. Energy Mater. Sol. Cells 125, 20–26 (2014)CrossRefGoogle Scholar
  14. 14.
    W.-C. Hsu, H. Zhou, S. Luo, T.-B. Song, Y.-T. Hsieh, H.-S. Duan, S. Ye, W. Yang, C. Jiang, B. Bob, Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn(S,Se)4 device. ACS Nano 8, 9164–9172 (2014)CrossRefGoogle Scholar
  15. 15.
    M.G. Sousa, A.F. da Cunha, P.A. Fernandes, J.P. Teixeira, R.A. Sousa, J.P. Leitão, Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance. Sol. Energy Mater. Sol. Cells 126, 101–106 (2014)CrossRefGoogle Scholar
  16. 16.
    J.J. Scragg, P.J. Dale, L.M. Peter, Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films 517, 2481–2484 (2009)CrossRefGoogle Scholar
  17. 17.
    S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, S.S. Kolekar, J.H. Kim, Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochim. Acta 55, 4057–4061 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Tao, J. Liu, L. Chen, H. Cao, X. Meng, Y. Zhang, C. Zhang, L. Sun, P. Yang, J. Chu, 7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chem. 18, 550–557 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, J. Guan, One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing. Appl. Surf. Sci. 402, 70–77 (2017)CrossRefGoogle Scholar
  20. 20.
    J.B. Li, V. Chawla, B.M. Clemens, Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 24, 720–723 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Xu, F. Wang, Z. Li, J. Liu, J. Ji, J. Chen, Effect of sulfosalicylic acid (C7H6O6S) on the electrodeposition of pure ZnS nanocrystal thin films from acidic solutions. Electrochim. Acta 87, 511–517 (2013)CrossRefGoogle Scholar
  22. 22.
    W. Liu, B. Guo, C. Mak, A. Li, X. Wu, F. Zhang, Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films 535, 39–43 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, H. Miyake, Preparation of Cu2ZnSnS4 single crystals from Sn solutions. J. Cryst. Growth 341, 38–41 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, K. Kakimoto, H. Miyake, Growth and characterization of Cu2ZnSnS4single crystals. Phys. Status Solidi (a) 210, 1328–1331 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations