Advertisement

Structural and electrical properties of BCZT ceramics synthesized by sol–gel process

Article
  • 116 Downloads

Abstract

Lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powders were synthesized by sol–gel process followed by pressureless sintering. The structures of BCZT powders and ceramics, as well as the electrical properties, were studied. Through sol–gel process, BCZT powders could be obtained at a relatively low temperature of 800 °C. The obtained BCZT powders were cubic phase structure and well crystallized with an average grain size of 104.53 nm. The powders were further densified at 1400 °C, and BCZT ceramics with homogenous and dense (relative density > 95%) structure were obtained. The BCZT ceramics exhibited excellent electrical properties (εm = 8808, 2Pr = 24.48µC/cm2 and d33 = 485pC/N), which was comparable to those of lead-based piezoelectric ceramics, due to the high activity of the BCZT powders prepared by sol–gel process.

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51272195, 51521001), 111 project (B13035), International Science and Technology Cooperation Project of Hubei Province (2016AHB008), Nature Science Foundation of Hubei Province (2015CFB724, 2016CFA006) and Fundamental Research Funds for the Central Universities (2017-JL-005).

References

  1. 1.
    Y. Tian, Y. Gong, D. Meng, H. Deng, B. Kuang, J. Mater. Sci. Mater. Electron. 26, 3750 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Guo, K.I. Kakimoto, H. Ohsato, Mater. Lett. 59, 241 (2005)CrossRefGoogle Scholar
  3. 3.
    Y. Cui, X. Liu, M. Jiang, Y.B. Hu, Q.S. Su, H. Wang, J. Mater. Sci. Mater. Electron. 23, 1342 (2012)CrossRefGoogle Scholar
  4. 4.
    W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  5. 5.
    X. Liu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, J. Alloys Compd. 15, 128 (2015)CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, H. Sun, X. Wang, Y. Zhang, X. Li, J. Eur. Ceram. Soc. 34, 1439 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Scripta. Mater. 65, 771774 (2011)Google Scholar
  8. 8.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Am. Ceram. Soc. 93, 2942 (2010)CrossRefGoogle Scholar
  9. 9.
    W. Li, Z. Xu, R. Chu, P. Fu, P. An, Ceram. Int. 38, 4353 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Wu, D. Xiao, W. Wu, J. Zhu, J. Wang, J. Alloys Compd. 509, 359 (2011)CrossRefGoogle Scholar
  11. 11.
    H.L. Sun, Q.J. Zheng, Y. Wan, Y. Chen, X. Wu, K.W. Kwok, H.L.W. Chan, D.M. Lin, J. Mater. Sci. Mater. Electron. 26, 5270 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Sun, Y. Zhang, X. Liu, Y. Liu, S.S. Guo, W. Chen, J. Mater. Sci. Mater. Electron. 25, 3962 (2014)CrossRefGoogle Scholar
  13. 13.
    X. Zhang, G. Dong, Y.Y. Li, L. Dong, J. Chin. Ceram. Soc. 43, 1706 (2015)Google Scholar
  14. 14.
    J.P. Praveen, K. Kumar, A.R. James, T. Karthik, S. Asthana, D. Das, Curr. Appl. Phys. 14, 396 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, Y. Pu, Z. Sun, Mater. Lett. 137, 128 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Hunpratub, S. Maensiri, P. Chindaprasirt, Ceram. Int. 40, 13025 (2014)CrossRefGoogle Scholar
  17. 17.
    V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, R.S. Katiyar, J. Phys. D 44, 3785 (2011)CrossRefGoogle Scholar
  18. 18.
    J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, J. Eur. Ceram. Soc. 5, 1785 (2015)CrossRefGoogle Scholar
  19. 19.
    R. Kavian, A. Saidi, J. Alloys Compd. 468, 528 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Tangwiwat, S.J. Milne, J. Non. Cryst. Solids. 351, 976 (2005)CrossRefGoogle Scholar
  21. 21.
    C.F. Chen, D.W. Reagor, S.J. Russell, Q.R. Marksteiner, L.M. Earley, D.A. Dalmas, H.M. Volz, D.R. Guidry, P.A. Papin, P. Yang, J. Am. Ceram. Soc. 94, 3727 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Shi, J. Zhong, R. Zuo, Y.D. Xu, L. Wang, H.L. Su, C. Gu, J. Alloys Compd. 562, 116 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Sangsubun, A. Watcharapasorn, S. Jiansirisomboon, Curr. Appl. Phys. 8, 61 (2008)CrossRefGoogle Scholar
  24. 24.
    Q. Zuo, L. Luo, Y. Yao, J. Alloys Compd. 632, 711 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Jiang, X.G. Tang, S.G. Ju, Q.X. Liu, T.F. Zhang, H.F. Xiong, J. Mater. Sci. Mater. Electron. 27, 3048 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Wang, Y. Li, Y. Lu, J. Eur. Ceram. Soc. 31, 2005 (2011)CrossRefGoogle Scholar
  27. 27.
    D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, X. Ren, J. Appl. Phys. 109, 054100 (2011)Google Scholar
  28. 28.
    X. Ji, L.M. Zhang, Q. Shen, S.B. Li, C.B. Wang, J. Chin. Ceram. Soc. 45, 1288 (2017)Google Scholar
  29. 29.
    X. Ji, C.B. Wang, S.B. Li, Q. Shen, L.M. Zhang, J. Synth. Cryst. 46, 2178 (2017)Google Scholar
  30. 30.
    M. Wang, R. Zuo, S. Qi, L. Liu, J. Mater. Sci. Mater. Electron. 23, 753 (2012)CrossRefGoogle Scholar
  31. 31.
    A.B. Haugen, J.S. Forrester, D. Damjanovic, B. Li, K.J. Bowman, J.L. Jones, J. Appl. Phys. 113, 257602 (2013)Google Scholar
  32. 32.
    P. Mishra, P. Kumar, J. Alloys Compd. 545, 210 (2012)CrossRefGoogle Scholar
  33. 33.
    K. Brajesh, M. Abebe, R. Ranjan, Phys. Rev. B. 94, 104108 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Abebe, K. Brajesh, A. Mishra, A. Senyshyn, R. Ranjan, Phys. Rev. B. 96, 014113 (2017)CrossRefGoogle Scholar
  35. 35.
    S.B. Li, C.B. Wang, L. Li, Q. Shen, L.M. Zhang, J. Alloys Compd. 730, 182 (2018)CrossRefGoogle Scholar
  36. 36.
    S.B. Li, L.M. Zhang, C.B. Wang, X. Ji, Q. Shen, Ceram. Int. 42, 18585 (2016)CrossRefGoogle Scholar
  37. 37.
    X.Y. Gao, L.M. Zhang, C.B. Wang, Q. Shen, J. Eur. Ceram. Soc. 37, 2399 (2017)CrossRefGoogle Scholar
  38. 38.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Mater. Sci. Eng. B 176, 65 (2011)CrossRefGoogle Scholar
  39. 39.
    V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, J. Mater. Sci. 48, 2151 (2013)CrossRefGoogle Scholar
  40. 40.
    L. Zhang, X. Wang, W. Yang, H. Liu, X. Yao, J. Appl. Phys. 104, 1354 (2008)Google Scholar
  41. 41.
    S.B. Li, C.B. Wang, X. Ji, Q. Shen, L.M. Zhang, J. Eur. Ceram. Soc. 37, 2067 (2017)CrossRefGoogle Scholar
  42. 42.
    Y. Tian, Y. Gong, Z. Zhang, D. Meng, J. Mater. Sci. Mater. Electron. 25, 5467 (2014)CrossRefGoogle Scholar
  43. 43.
    E. Nakamura, T. Mitsui, J. Furuichi, J. Phys. Soc. Jpn. 18, 1477 (2007)CrossRefGoogle Scholar
  44. 44.
    D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B. 46, 8013 (1992)CrossRefGoogle Scholar
  45. 45.
    J. Hao, W. Bai, W. Li, J. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012)CrossRefGoogle Scholar
  46. 46.
    K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)CrossRefGoogle Scholar
  47. 47.
    S. Roy, R. Maharana, S.R. Reddy, S. Singh, P. Kumar, T. Karthik, S. Asthana, V.V.B. Prasad, S.V. Kamat, Mater. Res. Express 3, 035702 (2016)CrossRefGoogle Scholar
  48. 48.
    Z.W. Tan, W.G. Fu, X.Y. Deng, R.B. Yang, X.F. Guan, C. Lu, Y.J. Zhang, L.R. Han, Adv. Mater. Res. 148, 1480 (2011)Google Scholar
  49. 49.
    W.J. Na, S.H. Ding, T.X. Song, J.S. Wang, Y. Wang, J. Inorg. Mater. 26, 655 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Lab of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.School of Materials and Chemical TechnologyTokyo Institute of TechnologyTokyoJapan

Personalised recommendations