Advertisement

Effects of Al2O3 nanoparticles on the microstructure and properties of Sn58Bi solder alloys

  • Wenbo Zhu
  • Yong Ma
  • Xuezheng Li
  • Wei Zhou
  • Ping Wu
Article
  • 117 Downloads

Abstract

In this work, Al2O3 nanoparticles with various contents (0, 0.5, 1.0, 1.5 wt%) were incorporated into Sn58Bi solder alloy. The microstructure, tensile properties, thermal properties, corrosion resistance, creep behavior and hardness of the synthetic solders were investigated. The results show that moderate additions of Al2O3 nanoparticles can make the Sn-rich and Bi-rich phases more evenly distribute. The ultimate tensile stress and hardness of Sn58Bi–0.5Al2O3 solder individually display about 22 and 19% enhancement compared with the pure solder. The thermal properties, corrosion resistance and creep performance are strengthened to varying degrees. Furthermore, there is a fracture mode transition in tensile process and a creep mode conversion in creep process.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572190).

References

  1. 1.
    D.R. Frear, J.W. Jang, J.K. Lin, C. Zhang, JOM-US 53, 28–33 (2001)CrossRefGoogle Scholar
  2. 2.
    L. Patrick, Altern. Med. Rev. 11, 2–23 (2006)Google Scholar
  3. 3.
    D. Suraski, K. Seelig, IEEE Trans. Electron. Packag. Manuf. 24, 244–248 (2001)CrossRefGoogle Scholar
  4. 4.
    G. Ren, I.J. Wilding, M.N. Collins, J. Alloy. Compd. 665, 251–260 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Yang, L. Zhang, Z. Liu, S. Zhong, J. Ma, L. Bao, Adv. Mater. Sci. Eng. 2016, 1–15 (2016)Google Scholar
  6. 6.
    P.L. Liu, J.K. Shang, Scripta. Mater. 44, 1019–1023 (2001)CrossRefGoogle Scholar
  7. 7.
    H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253–1273 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Li, Y.C. Chan, J. Alloy. Compd. 645, 566–576 (2015)CrossRefGoogle Scholar
  9. 9.
    M.M. Billah, K.M. Shorowordi, A. Sharif, J. Alloy. Compd. 585, 32–39 (2014)CrossRefGoogle Scholar
  10. 10.
    A.A. El-Daly, W.M. Desoky, T.A. Elmosalami, M.G. El-Shaarawy, A.M. Abdraboh, Mater. Des. 65, 1196–1204 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Ma, X. Li, W. Zhou, L. Yang, P. Wu, Mater. Des. 113, 264–272 (2017)CrossRefGoogle Scholar
  12. 12.
    S.F. Hassan, M. Gupta, Metall. Mater. Trans. A 36, 2253–2258 (2005)CrossRefGoogle Scholar
  13. 13.
    X.L. Zhong, M. Gupta, J. Phys. D 41, 095403 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Amares, M.N.E. Efzan, R. Durairaj, A. Niakan, IOP Conf. Ser. 205, 012002 (2017)CrossRefGoogle Scholar
  15. 15.
    T. Hu, Y. Li, Y.C. Chan, F. Wu, Microelectron. Reliab. 55, 1226–1233 (2015)CrossRefGoogle Scholar
  16. 16.
    R.H. Kane, B.C. Giessen, N.J. Grant, Acta Metall. 14, 605–609 (1966)CrossRefGoogle Scholar
  17. 17.
    Q.J. Zhai, S.K. Guan, Q.Y. Shang, Alloy Thermo-Mechanism: Theory and Application. (Metallurgy Industry Press, Beijing, 1999)Google Scholar
  18. 18.
    Z. Xia, Z. Chen, Y. Shi, N. Mu, N. Sun, J. Electron. Mater. 31, 564–567 (2002)CrossRefGoogle Scholar
  19. 19.
    K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, S. Stappert, Phys. Rev. Lett. 91, 106102 (2003)CrossRefGoogle Scholar
  20. 20.
    Y. Li, X. Zhao, Y. Liu, Y. Wang, Y. Wang, J. Mater. Sci. 25, 3816–3827 (2014)Google Scholar
  21. 21.
    B.L. Silva, G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, A. Garcia, J.E. Spinelli, Mater. Charact. 107, 43–53 (2015)CrossRefGoogle Scholar
  22. 22.
    B.L. Silva, V.C.E.D. Silva, A. Garcia, J.E. Spinelli, J. Electron. Mater. 3, 1754–1769 (2017)CrossRefGoogle Scholar
  23. 23.
    W.L.E. Wong, M. Gupta, Compos. Sci. Technol. 67, 1541–1552 (2007)CrossRefGoogle Scholar
  24. 24.
    Z. Sz´araz, Z. Trojanov´, M. Cabbibo, E. Evangelista, Mater. Sci. Eng. A 462, 225–229 (2007)CrossRefGoogle Scholar
  25. 25.
    N. Ramakrishnan, Acta. Mater. 44, 69–77 (1996)CrossRefGoogle Scholar
  26. 26.
    J. Shen, Y. Pu, H. Yin, D. Luo, J. Chen, J. Alloy. Compd. 614, 63–70 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Choi, X. Li, J. Mater. Sci. 47, 3096–3102 (2012)CrossRefGoogle Scholar
  28. 28.
    T.H. Chuang, M.W. Wu, S.Y. Chang, S.F. Ping, L.C. Tsao, J. Mater. Sci. 22, 1021–1027 (2011)Google Scholar
  29. 29.
    Y. Shin, S. Lee, C. Lee, S. Jung, J. Kim, IEEE EPTC 279–284 (2008)Google Scholar
  30. 30.
    Y. Liu, H. Fu, F. Sun, H. Zhang, X. Kong, T. Xin, J. Mater. Process. Technol. 238, 290–296 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Chriaˇstel’v´a, M. Oˇzvold, J. Alloy. Compd. 457, 323–328 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Rajakumar, C. Muralidharan, V. Balasubramanian, Mater. Des. 32, 2878–2890 (2011)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, S. Lim, J.L. Luo, Z.H. Xu, Wear 260, 976–983 (2006)CrossRefGoogle Scholar
  34. 34.
    M.E. Cordova, Y.-L. Shen, J. Mater. Sci. 50, 1394–1400 (2015)CrossRefGoogle Scholar
  35. 35.
    L. Shen, P. Septiwerdani, Z. Chen, Mater. Sci. Eng. A 558, 253–258 (2012)CrossRefGoogle Scholar
  36. 36.
    D. Grivas, K.L. Murty, J.W. Morris Jr, Acta Metall. 27, 731–737 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenbo Zhu
    • 1
  • Yong Ma
    • 1
  • Xuezheng Li
    • 1
  • Wei Zhou
    • 1
  • Ping Wu
    • 1
  1. 1.Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of ScienceTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations