Syntheses and characterization of complexes of copper(II) with Schiff-base ligands derived from 2,6-diacetylpyridine: spectroscopic, thermal behavior, magnetic moment and photoluminescent studies

  • P. Dhanakodi
  • M. Jayandran
  • V. Balasubramanian


Transition metal complexes derived from the Schiff base ligands are versatile compounds and playing vital role in organic light emitting diodes, medicinal and pharmaceutical fields due to their luminescent abilities and biological activities. Metal complexes of the two Schiff base ligands with Cu(II) ions were synthesized by reacting each ligand 2, 6-diacetylpyridine bis (benzoylhydrazone) (DAPBH) and 2, 6-diacetylpyridine bis (benzenesulfonylhydrazide) (DAPBSH) with the metal salts in refluxing ethanol. The compound DAPBH and DAPBSH reacted with copper(II) nitrates to provide the corresponding complexes A and B respectively. Both the ligands and complexes are characterized by UV-Visible spectroscopy, thermogravimetry, fourier transform infrared spectroscopy, photoluminescence spectra and scanning electron microscopy. Complexes A and B emit intense luminescence in solution, and a solvent dependent luminescent feature is found. In the solid state, complex B emits weak luminescence under 365 nm excitation from an ultraviolet lamp. Magnetic susceptibility measurements revealed that there are antiferromagnetic exchange interactions between the neighboring spins and IR studies confirm the existence of coordinated water molecules in the complex.


  1. 1.
    S. Arulmurugan, H.P. Kavitha, R.P. Venkatraman, Russ. J. Chem. 3, 385–410 (2010)Google Scholar
  2. 2.
    J.G. Haasnoot, Coord. Chem. Rev. 200, 131 (2000)CrossRefGoogle Scholar
  3. 3.
    M. Alizadeh, F. Farzaneh, M. Ghandi, J. Mol. Catal. A 194, 283 (2003)CrossRefGoogle Scholar
  4. 4.
    H. Dugas, C. Penney, Bioorganic Chemistry. (Springer, New York, 1981)CrossRefGoogle Scholar
  5. 5.
    J.D. Mergerum, L.J. Miller, Photochromism, (Wiley, Hoboken, 1971)Google Scholar
  6. 6.
    L. Que, W.B. Tolman, Angew. Chem. 114, 1160 (2002)CrossRefGoogle Scholar
  7. 7.
    B. Dede, I. Ozmen, F. Karipcin, Polyhedron 28, 3967 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Bunce, R.J. Cross, L.J. Farrugia, S. Kunchandy, L.L. Meason, K.W. Muir, M.O. Donnell, R.D. Peacock, D. Stirling, S.J. Teat, Polyhedron 17, 4179 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Yamada, Coord. Chem. Rev. 1, 415 (1966)CrossRefGoogle Scholar
  10. 10.
    C.T. Barboiu, M. Luca, C. Pop, E. Brewster, M.E. Dinculescu, Eur. J. Med. Chem. 31, 597 (1996)CrossRefGoogle Scholar
  11. 11.
    Y.Y. Shibuya, K. Nabari, M. Kondo, S. Yasue, K. Maeda, F. Uchida, H. Kawaguchi, Chem. Lett. 37, 78 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Roth, J. Becher, C. Herrmann, H. Gorls, G. Vaughan, M. Reiher, D. Klemm, W. Plass, Inorg. Chem. 45, 10066 (2006)CrossRefGoogle Scholar
  13. 13.
    S. Sarma, P.K. Bhattacharyya, D.K. Das, J. Fluoresc. 26, 899 (2016)CrossRefGoogle Scholar
  14. 14.
    J. McGinley, J.M.D. Walsh, Inorg. Chem. Commun. 14, 1018 (2011)CrossRefGoogle Scholar
  15. 15.
    N.E. Eltayeb, S.G. Teoh, R. Adnan, J.B. Teh, H.K. Fun, J. Fluoresc. 21, 1393 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Sutradhar, M.V. Kirillova, M.F.C.G. da Silva, C.M. Liu, A.J.L. Pombeiro, Dalton Trans. 42, 16578 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Lu, T. Fan, W.W. Guo, J. Lu, C.H. Fan, Inorg. Chim. Acta 400, 191 (2013)CrossRefGoogle Scholar
  18. 18.
    L. Ratjen, J.M. Lehn, RSC Adv. 4, 50554 (2014)CrossRefGoogle Scholar
  19. 19.
    B.A.D. Neto, B.F.L. Viana, T.S. Rodrigues, P.M. Lalli, M.N. Eberlin, W.A. da Silva, H.C.B. Oliveira, C.C. Gatto, Dalton Trans. 42, 11497 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Yusnita, S. Puvaneswary, H.M. Ali, W.T. Robinson, T. Kwai-Lin, Polyhedron 28, 3050 (2009)CrossRefGoogle Scholar
  21. 21.
    X.-S. Gao, C.-C. Ni, X.M. Ren, Polyhedron (2017). Google Scholar
  22. 22.
    M.A. Ali, A.H. Mirza, J.D. Chartres, P.V. Bernhardt, Polyhedron 30, 299 (2011)CrossRefGoogle Scholar
  23. 23.
    B.V. Patel, K. Desai, T. Thaker, Synth. React. Inorg. Met.-Org. Chem 19, 391 (1989)CrossRefGoogle Scholar
  24. 24.
    S.A. Sallam, A.S. Orabi, B.A. El-Shetary, A. Lentz, Trans. Met. Chem. 27, 447 (2002)CrossRefGoogle Scholar
  25. 25.
    P.S.N. Reddy, B.V. Agarwala, Synth. React. Inorg Met.-Org.Chem. 17, 585 (1987)CrossRefGoogle Scholar
  26. 26.
    N. Kavitha, P.V.A. Lakshmi, J. Saudi Chem. Soc. 21, S466 (2017)CrossRefGoogle Scholar
  27. 27.
    K. Kralova, K. Kissova, O. Svajlenova, J. Vanco, Chem. Pap. 58, 361 (2000)Google Scholar
  28. 28.
    J. Parekh, P. Inamdhar, R. Nair, S. Baluja, S. Chanda, J. Serb. Chem. Soc. 70, 1161 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Dhanakodi
    • 1
  • M. Jayandran
    • 2
  • V. Balasubramanian
    • 1
  1. 1.Department of ChemistryAMET UniversityChennaiIndia
  2. 2.Department of ChemistryGovernment Arts CollegeUdumalpetIndia

Personalised recommendations