Advertisement

Fabrication and investigation of high performance CNT-incorporated tin-oxide supercapacitor

  • Hassan Abdollahi
  • Mahmoud Samkan
  • Mohammad Ala Mohajerzadeh
  • Zeinab Sanaee
  • Shams Mohajerzadeh
Article
  • 92 Downloads

Abstract

In this paper, we have developed an inexpensive and simple method to realize high performance supercapacitor with high specific capacitance of 21 mF/cm2 at a scan rate of 10 mV/s, which is among the highest areal capacitance values reported for SnO2 based devices. Stainless steel foils, coated with a mixture of tin oxide (sol–gel) and multiwall carbon nanotube powder to act as the working electrode, have been employed as substrates for the fabrication of these supercapacitors. The use of hydrogen plasma at a moderate temperature of 300–600 °C has been found to be suitable to functionalize the tin-oxide layer and to incorporate deep porosity in its structure. The application of carbon nanotubes has been a critical step to improve the capacitance of the device and to add to its cycling stability. Comparing the results of tin-oxide with CNT-incorporated structures demonstrates more than two orders of magnitude improvement in the value of areal capacitance. The films have been analyzed using scanning and transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The electrochemical properties of the electrodes have been examined using the cyclic voltammetry and galvanostatic measurements.

References

  1. 1.
    C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. J. Nano Lett. 10, 4863 (2010)CrossRefGoogle Scholar
  2. 2.
    Y.G. Wang, Y.Y. Xia, A new concept hybrid electrochemical surpercapacitor: carbon/LiMn2O4 aqueous system. J. Electrochem. Commun. 7, 1138 (2005)CrossRefGoogle Scholar
  3. 3.
    D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99 (1998)CrossRefGoogle Scholar
  4. 4.
    X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, Improving the cycling stability of metal–nitride supercapacitor electrodes with a thin carbon shell. J. Adv. Energy Mater. 4, 1300994 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Li, T. Chang, G. Yun, J. Guo, B. Yang, 2D tin dioxide nanoplatelets decorated graphene with enhanced performance supercapacitor. J. Alloys Compd. 586, 353 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Xie, F. Zhu, Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor. J. Solid State Electrochem. 21, 1675 (2017)CrossRefGoogle Scholar
  7. 7.
    R. Wang, Y. Sui, S. Huang, Y. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527 (2018)CrossRefGoogle Scholar
  8. 8.
    F.H. Kuok, C.Y. Liao, C.W. Chen, Y.C. Hao, I.S. Yu, J.Z. Chen, Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor. J. Mater. Res. Expr. 4, 115501 (2017)CrossRefGoogle Scholar
  9. 9.
    S.W. Hwang, S.H. Hyun, Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors. J. Power Sources 172, 451 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Yan, E. Khoo, A. Sumboja, P.S. Lee, Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. J. ACS Nano 4(7), 4247 (2010)CrossRefGoogle Scholar
  11. 11.
    D. Hulicova, J. Yamashita, Y. Soneda, H. Hatori, M. Kodama, Supercapacitors prepared from melamine-based carbon. J. Chem. Mater. 17, 1241 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Fathi, M. Saghafi, F. Mahboubi, S. Mohajerzadeh, Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. J. Synth. Met. 198, 345 (2014)CrossRefGoogle Scholar
  13. 13.
    F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. J. Adv. Mater. (2014).  https://doi.org/10.1002/adma.201304137 Google Scholar
  14. 14.
    S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kimc, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22, 767 (2012)CrossRefGoogle Scholar
  15. 15.
    S.L. Kuo, N.L. Wu, Composite supercapacitor containing tin oxide and electroplated ruthenium Oxide. J. Electrochem. Solid State Lett. 6, 85 (2003)CrossRefGoogle Scholar
  16. 16.
    S. Ramesh, S. Khandelwal, K.Y. Rhee, D. Hui, Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. J. Compos. B. 138, 45 (2018)CrossRefGoogle Scholar
  17. 17.
    B.G.S. Raj, S. Bhuvaneshwari, J.J. Wu, A.M. Asiri, S. Anandan, Sonochemical synthesis of Co2SnO4 nanocubes for supercapacitor applications. J. Ultrason.-Sonochem. 41, 435 (2018)CrossRefGoogle Scholar
  18. 18.
    V. Subramanian, H. Zhu, B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. J. Electrochem. Commun. 8, 827 (2006)CrossRefGoogle Scholar
  19. 19.
    Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 12, 4206 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, C. Shao, Y. Liu, Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior. J. Colloid Interface Sci. 356, 706 (2011)CrossRefGoogle Scholar
  21. 21.
    M. I.Shakir, M. Shahida, D.J. Nadeemc, Kanga, Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. J. Electrochim. Acta 72, 134 (2012)CrossRefGoogle Scholar
  22. 22.
    R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. 112, 1825 (2008)Google Scholar
  23. 23.
    R. Li, X. Ren, F. Zhang, C. Du, J. Liu, Synthesis of Fe3O4@SnO2 core–shell nanorod film and its application as a thin-film supercapacitor electrode. J. Chem. Commun. 48, 5010 (2012)CrossRefGoogle Scholar
  24. 24.
    O. Kwon, B.K. Deka, J. Kim, H.W. Park, Electrochemical performance evaluation of tin oxide nanorod-embedded woven carbon fiber composite supercapacitor. J. Energy Res. (2017).  https://doi.org/10.1002/er.3827
  25. 25.
    J. Bae, Y.J. Park, J.C. Yang, H.W. Kim, D. Kim, Towards wearable and stretchable fabric-based supercapacitors: novel ZnO and SnO2 nanowires—carbon fiber and carbon paper hybrid structure. J. Solid State Electrochem. 19, 211 (2015)CrossRefGoogle Scholar
  26. 26.
    G.P. Shukla, M.C. Bhatnagar, Study the synthesis parameter of tin oxide nanostructure. J. Mater. Sci. Eng. B 5(9–10), 353 (2015)Google Scholar
  27. 27.
    W. Zhu, W. Wang, H. Xu, J. Shi, Fabrication of ordered SnO2 nanotube arrays via a template route. J. Mater. Chem. Phys. 99, 127 (2006)CrossRefGoogle Scholar
  28. 28.
    N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens. Actuators B 107, 708 (2005)CrossRefGoogle Scholar
  29. 29.
    L. Tan, L. Wang, Y. Wang, Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical properties. J. Nanomater. 529874, 1 (2011)CrossRefGoogle Scholar
  30. 30.
    Z. He, J. Zhou, Synthesis, characterization, and activity of tin oxide nanoparticles: influence of solvothermal time on photocatalytic degradation of rhodamine B. J. Mod. Res. Catal. 2, 13 (2013)CrossRefGoogle Scholar
  31. 31.
    A.D. Bhagwat, S.S. Sawant, B.G. Ankamwar, C.M. Mahajan, Synthesis of nanostructured tin oxide (SnO2) powders and thin films by sol-gel method. J. Nano Electron. Phys. 7(4), 4037-1 (2015)Google Scholar
  32. 32.
    A. Johari, M.C. Bhatnagar, V. Rana, Growth, characterization and I-V characteristics of tin oxide (SnO2) nanowires. J. Adv. Mater. Lett. 3, 515 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Cabot, J. Arbiol, E. Rossinyol, J.R. Morante, F. Chen, M. Liu, Synthesis of tin oxide nanostructures with controlled particle size using mesoporous frameworks. J. Electrochem. Solid-State Lett. 7, 93 (2004)CrossRefGoogle Scholar
  34. 34.
    R. Savua, E. Joannia, Low-temperature, self-nucleated growth of indium–tin oxide nanostructures by pulsed laser deposition on amorphous substrates. Scr. Mater. 55, 979 (2006)CrossRefGoogle Scholar
  35. 35.
    B. Guo, Y. Yang, Z. Hu, Y. An, Q. Zhang, X. Yang, X. Wang, H. Wu, Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor. J. Electrochim. Acta 223, 74 (2017)CrossRefGoogle Scholar
  36. 36.
    A. Mashayekhi, S.M. Hosseini. M. Hassanpour Amiri, N. Namdar, Z. Sanaee, Plasma-assisted nitrogen doping of VACNTs for efficiently enhancing the supercapacitor performance. J. Nanopart. Res. 18, 154 (2016)CrossRefGoogle Scholar
  37. 37.
    D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Sattari Aeronautical University of Science and TechnologyTehranIran
  2. 2.Thin Film and Nanoelectronic Lab, School of Electrical and Computer EngineeringUniversity of TehranTehranIran
  3. 3.Nano-fabricated Energy Devices Lab, School of Electrical and Computer EngineeringUniversity of TehranTehranIran

Personalised recommendations