Interfacial ferromagnetism in reduced graphene oxide–ZnO nanocomposites

  • Kamarajan Thiyagarajan
  • Munisamy Muralidharan
  • Kandasamy Sivakumar
Article
  • 69 Downloads

Abstract

Reduced Graphene Oxide (rGO) and rGO–ZnO nanocomposites have been successfully prepared by hydrothermal and solvothermal method, respectively. Powder XRD and Raman spectroscopy studies confirmed the formation of nanocomposites. The nanostructures of samples were imaged and found that ZnO nanoparticles covered over rGO sheets. The reduction of various oxygen containing functional groups attached on the few layered graphitic planes and the presence of oxygen vacancies in nanocomposites were confirmed by XPS. The relative contribution of PL emission bands in composites arises due to the existence of intrinsic defects. The M–H curve of rGO sheets and rGO–ZnO nanocomposites exhibit ferromagnetic behavior. The decrease of magnetization in composites owing to increases the rGO ratio leads to decrease the oxygen vacancies in the surface of ZnO nanopaticles.

Notes

Acknowledgements

Authors acknowledged to Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology (IITM), Madras for this support on characterization of samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M.A. Garcia, J.M. Merino, E. Fernndez Pinel, A. Quesada, J. de la Venta, M.L. Ruz Gonzlez, G.R. Castro, P. Crespo, J. Llopis, J.M. Gonzlez-Calbet, A. Hernando, Magnetic properties of ZnO nanoparticles. Nano Lett. 7, 1489–1494 (2007)CrossRefGoogle Scholar
  2. 2.
    T. Dietl, Dilute magnetic semiconductors: functional ferromagnets. Nature Mater. 2, 646–648 (2003)CrossRefGoogle Scholar
  3. 3.
    T. Kataoka, M. Kobayashi, Y. Sakamoto, G.S. Song, A. Fujimori, F.-H. Chang, H.-J. Lin, D.J. Huang, C.T. Chen, T. Ohkochi, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, A. Tanaka, S.K. Mandal, T.K. Nath, D. Karmakar, I. Dasgupta, Electronic structure and magnetism of the diluted magnetic semiconductor Fe-doped ZnO nanoparticles. J. Appl. Phys. 107, 033718 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Gu, W. Zhang, Y. Xu, M. Yan, Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl. Phys. Lett. 100, 202401 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Srinet, R. Kumar, V. Sajal, Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles. J. Appl. Phys. 114, 033912 (2013)CrossRefGoogle Scholar
  6. 6.
    S.U. Awan, S.K. Hasanain, M.F. Bertino, G.H. Jaffari, Ferromagnetism in Li doped ZnO nanoparticles: the role of interstitial Li. J. Appl. Phys. 112, 103924 (2012)CrossRefGoogle Scholar
  7. 7.
    T.-L. Phan, Y.D. Zhang, D.S. Yang, N.X. Nghia, T.D. Thanh, S.C. Yu, Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling. Appl. Phys.Lett. 102, 072408 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Xu, C. Xu, J. Dai, J. Hu, F. Li, S. Zhang, Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C 116, 8813–8818 (2012)CrossRefGoogle Scholar
  9. 9.
    B.B. Stramual, S.G. Protasova, A.A. Mazilkin, G. Schutz, E. Goering, B. Baretzky, P.B. Straumal, Ferromagnetism of zinc oxide nanograined films. JETP Lett. 97, 6 (2013)Google Scholar
  10. 10.
    P. Kumar, H.K. Malik, K. Asokan, Tuning of optical band gap and magnetization of C- implanted ZnO thin films. EPL 110, 67006 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Deng, H. Fan, M. Wang, M.M. Zheng, J. Yi, R. Wu. H. Tan, C. Sow, J. Ding, Y. Feng, K. Loh, Thiol-Capped ZnO nanowires/nanotube arrays with tunable ferromagnetic properties at room temperature. ACS Nano. 4, 495–505 (2010)CrossRefGoogle Scholar
  12. 12.
    Y.-C. Chen, Z. Wang, A. Leineweber, J. Baier, T. Tietze, F. Phillipp, G. Schutz, E. Goering, Effect of surface configurations on the room-temperature magnetism of pure ZnO. J. Mater. Chem. C 4, 4166 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Chaboy, R. Boada, C. Piquer, M.A. Laguna-Marco, M. García-Hernández, N. Carmona, J. Llopis, M.L. Ruíz-González, J. González-Calbet, J.F. Fernández, M.A. García, Evidence of intrinsic magnetism in capped ZnO nanoparticles. Phys. Rev. B 82, 064411 (2010)CrossRefGoogle Scholar
  14. 14.
    G. Jayalakshmi, N. Gopalakrishnan, T. Balasubramanian, Activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine. J. Alloy. Compd. 551, 667–671 (2013)CrossRefGoogle Scholar
  15. 15.
    Z. Xiang, J. Qian, Y. Zhou, F. Liu, C. Qi, X. Shi, G. Wang, S. Ye, Synthesis of quasi-core–shell Co-doped ZnO/graphene nanoparticles. Mater. Lett. 161, 286–288 (2015)CrossRefGoogle Scholar
  16. 16.
    N. Tu, N.H. Dung, N.T. Lan, K.T. Nguyen, N.D. Dung, D.X. Viet, N.T. Tuan, H.V. Bui, D.V. Nam, P.T. Huy, N. Saito, Enhanced ferromagnetism in graphite-like carbon layer-coated ZnO crystals. J. Alloy. Compd. 695, 233–237 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Akbar, M. Kolahdouz, Sh Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics and nanosensing. J. Mater. Sci. 26, 4347–4379 (2015)Google Scholar
  18. 18.
    H.A.M. Vozmediano, L.P.M. Sancho, T. Stauber, F. Guinea, Local defects and ferromagnetism in graphene layers. Phys. Rev. B 72, 155121 (2005)CrossRefGoogle Scholar
  19. 19.
    R.L. Radovic, B. Bockrath, On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. J. Am. Chem. Soc. 127, 5917–5927 (2005)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, Y. Huang et al., Room-temperature ferromagnetism of graphene. Nano Lett. 9, 220–224 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Qin, P. Sun, Q. Di, S. Zhou, C. Yang, Q. Xu, Ferromagnetism of three-dimensional graphene framework. RSC Adv. 5, 92899–92904 (2015)CrossRefGoogle Scholar
  22. 22.
    Z. Sun, X. Yang, C. Wang, T. Yao, L. Cai, W. Yan, Y. Jiang, F. Hu, J. He, Z. Pan, Q. Liu, S. Wei, Graphene activating room-temperature ferromagnetic exchange in cobalt-doped ZnO dilute magnetic semiconductor quantum dots. ACS Nano. 8, 10589–10596 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Prakash, S.K. Misra, D. Bahadur, The role of reduced graphene oxide capping on defect induced ferromagnetism of ZnO nanorods. Nanotechnology. 24, 095705 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Thiyagarajan, K. Sivakumar, Oxygen vacancy-induced room temperature ferromagnetism in graphene–SnO2 nanocomposites. J. Mater. Sci. 52, 8084–8096 (2017)CrossRefGoogle Scholar
  25. 25.
    K. Thiyagarajan, M. Muralidharan, K. Sivakumar, Defects-induced magnetism in WO3 and reduced graphene oxide-WO3 nanocomposites. J. Supercond. Nov. Magn. 31, 117–125 (2018)CrossRefGoogle Scholar
  26. 26.
    G. Khurana, N. Kumar, R.K. Kotnala, T. Nautiyal, R.S. Katiyar, Temperature tuned defect induced magnetism in reduced graphene oxide. Nanoscale 5, 3346–3351 (2013)CrossRefGoogle Scholar
  27. 27.
    Y. Bu, Z. Chen, W. Li, B. Hou, Highly efficient photocatalytic performance of Graphene—ZnO quasi-shell—core composite material., ACS Appl. Mater. Interfaces 5, 12361–12368 (2013)CrossRefGoogle Scholar
  28. 28.
    Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, P.K. Loh, Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950–2956 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Qin, X. Guo, Y. Cao, Z. Ni, Q. Xu, Strong ferromagnetism of reduced graphene oxide. Carbon. 78, 559–565 (2014)CrossRefGoogle Scholar
  30. 30.
    T.N. Reddy, J. Manna, R.K. Rana, Polyamine-mediated interfacial assembly of rGO-ZnO nanostructures: a bio-inspired approach and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces. 7, 19684–19690 (2015)CrossRefGoogle Scholar
  31. 31.
    D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, W.K. Choi, Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–471 (2012)CrossRefGoogle Scholar
  32. 32.
    A. Prakash, D. Bahadur, The role of ionic electrolytes on capacitive performance of ZnO-reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl. Mater. Interfaces 6, 1394–1405 (2014)CrossRefGoogle Scholar
  33. 33.
    Z. Gao, J. Zhang, Y. Fu, J. Xu, D. Qi, Xue, Room temperature ferromagnetism of pure ZnO nanoparticles. Appl. Phys. Let. 105, 113928 (2009)CrossRefGoogle Scholar
  34. 34.
    X. Pan, M.-Q. Yang, Y.-J. Xu, Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide—a unique 2D macromolecular surfactant. Phys. Chem. Chem. Phys. 16, 5589–5599 (2014)CrossRefGoogle Scholar
  35. 35.
    X. Xue, L. Liu, Z. Wang, Y. Wu, Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles. J. Appl. Phys. 115, 033902 (2014)CrossRefGoogle Scholar
  36. 36.
    S. Ghose, A. Sarkar, S. Chattopadhyay, M. Chakrabarti, D. Das, T. Rakshit, S.K. Ray, D. Jana, Surface defects induced ferromagnetism in mechanically milled nanocrystalline ZnO. J. Appl. Phys. 114, 073516 (2013)CrossRefGoogle Scholar
  37. 37.
    R.K. Biroju, N. Tilak, G. Rajender, S. Dhara, P.K. Giri, Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse. Nanotechnology 26, 145601 (2015)CrossRefGoogle Scholar
  38. 38.
    T. Taniguchi, H. Yokoi, M. Nagamine, H. Tateishi, A. Funatsu, K. Hatakeyama, C. Ogata, M. Ichida, H. Ando, M. Koinuma, Y. Matsumoto, Correlated optical and magnetic properties in photoreduced graphene oxide. J. Phys. Chem. C 118, 28258–28265 (2014)CrossRefGoogle Scholar
  39. 39.
    T. Tang, N. Tang, Y. Zheng, X. Wan, Y. Liu, F. Liu, Q. Xu, Y. Du, Robust magnetic moments on the basal plane of the graphene sheets effectively induced by OH groups. Sci. Rep. 5, 8448 (2015)CrossRefGoogle Scholar
  40. 40.
    A. Diamantopoulo, S. Glenis, G. Zolnierkiwicz, N. Guskos, V. Likodimos, Magnetism in pristine and chemically reduced graphene oxide. J. Appl. Phys. 121, 043906 (2017)CrossRefGoogle Scholar
  41. 41.
    K. Bagani, M.K. Ray, B. Satpati, N. R.Ray, M. Sarder, S. Banerjee, Contrasting magnetic properties of thermally and chemically reduced graphene oxide. J. Phys. Chem. C 118, 13254–13259 (2014)CrossRefGoogle Scholar
  42. 42.
    D. Lee, J. Seo, Magnetic frustration of graphite oxide. Sci. Rep. 7, 44690 (2017)CrossRefGoogle Scholar
  43. 43.
    J. Chen, W. Zhang, Y. Sun, Y. Zheng, N. Tang, Y. Du, Creation of localized spins in graphene by ring-opening of epoxy derived hydroxyl. Sci. Rep. 6, 26862 (2016)CrossRefGoogle Scholar
  44. 44.
    K. Bagani, A. Bhattacharya, J. Kaur, A. Rai Chowdhury, B. Ghosh, M. Sardar, S. Banerjee, Anomalous behavior of magnetic coercivity in graphene oxide and reduced graphene oxide. J. Appl. Phys. 115, 023902 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Qin, Q. Xu, Room temperature ferromagnetismin N2 plasma treated graphene oxide. J. Alloy. Compd. 692, 332–338 (2017)CrossRefGoogle Scholar
  46. 46.
    B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater. 20, 1161–1165 (2010)CrossRefGoogle Scholar
  47. 47.
    W. Liu, W. Li, Z. Hu, Z. Tang, X. Tang, Effect of oxygen defects on ferromagnetic of undoped ZnO. J. Appl. Phys. 110, 013901 (2011)CrossRefGoogle Scholar
  48. 48.
    P. Zhan, W. Wang, C. Liu, Z. Li, Z. Zhang, P. Zhang, B. Wang, X. Cao, oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films. J. Appl. Phys. 111, 033501 (2012)CrossRefGoogle Scholar
  49. 49.
    T. Tietze, P. Audehm, Y.-C. Chen, G. Schtz, B.B. Straumal, S.G. Protasova, A.A. Mazilkin, P.B. Straumal, T. Prokscha, H. Luetkens, Z. Salman, A. Suter, B. Baretzky, K. Fink, W. Wenzel, D. Danilov, E. Goering, Interfacial dominated ferromagnetism in nanograined ZnO: a µSR and DFT study. Sci. Rep. 5, 8871 (2015)CrossRefGoogle Scholar
  50. 50.
    Z. Li, W. Zhong, X. Li, H. Zeng, G. Wang, W. Wang, Z. Yang, Y. Zhang, Strong room-temperature ferromagnetism of ZnO nanostructure arrays via colloidal template. J. Mater. Chem. C 1, 6807–6812 (2013)CrossRefGoogle Scholar
  51. 51.
    K. Saravanan, G. Jayalakshmi, S. Chandra, B.K. Panigrahi, R. Krishnan, B. Sundaravel, S. Annapoorani, D.K. Shukla, P. Rajput, D. Kanjilal, The influence of carbon concentration on the electronic structure and magnetic properties of carbon implanted ZnO thin films. Phys. Chem. Chem. Phys. 19, 13316–13323 (2017)CrossRefGoogle Scholar
  52. 52.
    X. Battle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D 35, R15–R42 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kamarajan Thiyagarajan
    • 1
  • Munisamy Muralidharan
    • 2
  • Kandasamy Sivakumar
    • 1
  1. 1.Department of PhysicsAnna UniversityChennaiIndia
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations