Role of nuclei in controllable MoS2 growth by modified chemical vapor deposition

  • Wenlei Song
  • Ming Gao
  • Pengbo Zhang
  • Baichao Han
  • Dongyun Chen
  • Xiaohong Fang
  • Lei Zhao
  • Zhongquan Ma
Article
  • 72 Downloads

Abstract

The large area and high-quality two-dimensional molybdenum disulfide (2D-MoS2) film has been synthesized by a modified single-zone chemical vapor deposition technique. The influence of gas environment, reaction temperature and gap distance (between MoO3 precursor and substrate) on 2D-MoS2 growth were systematically investigated. A stable gas environment was prerequisite for the formation of 2D-MoS2, and it can be achieved by adjusting the pressure and flow rate of N2 in the furnace tube, which was numerical estimated via Antoine equation. The thickness, quality (uniformity and crystallinity), roughness, and chemical composition of the MoS2 nano-film were characterized by the optical microscopy, scanning electron microscope, Raman spectroscopy, Atomic force microscope, and X-ray photoelectron spectroscopy, respectively. The results showed that the quality of MoS2 nano-film was greatly influenced by the nucleation density on the substrate, which could be controlled by modulating the reaction temperature and gap distance. Moreover, a “frustum-like” model was established to match the practical reaction situation and clarify the internal relationship among reaction temperature, gap distance and the nucleation density of MoS2 film. Finally, a high-quality monolayer MoS2 nano-film, at 800 °C with a gap distance of 3.5 mm, was obtained and verified by experimental and numerical analyses.

Notes

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 61674099, 61274067 and 60876045), and the R&D Foundation of SHU-SOENs PV Joint Lab (No. SS-E0700601). One of the authors (Wenlei Song) appreciate Dr. Jianwei Shi of Arizona State University for his helpful revision and discussion of the manuscript.

Supplementary material

10854_2018_8733_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1289 KB)
10854_2018_8733_MOESM2_ESM.tif (21.1 mb)
Supplementary material 2 (TIF 21657 KB)
10854_2018_8733_MOESM3_ESM.tif (21.8 mb)
Supplementary material 3 (TIF 22299 KB)
10854_2018_8733_MOESM4_ESM.tif (50.6 mb)
Supplementary material 4 (TIF 51837 KB)

References

  1. 1.
    W.Z. Wang, X.B. Zeng, S.X. Wu, Y. Zeng, Y.S. Hu, J. Ding, S. Xu, Effect of Mo concentration on shape and size of monolayer MoS2 crystals by chemical vapor deposition. J. Phys. D 50, 395501 (2017)CrossRefGoogle Scholar
  2. 2.
    S.L. Wong, H.F. Liu, D.Z. Chi, Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides. Prog. Cryst. Growth Charact. Mater. 62, 9–28 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Y.J. Wang, Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Mater. Res. Bull. 98, 59–63 (2018)CrossRefGoogle Scholar
  4. 4.
    G.L. Wu, H.J. Wu, K.K. Wang, C.H. Zheng, Y.Q. Wang, A.L. Feng, Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC Adv. 6, 58069–58076 (2016)CrossRefGoogle Scholar
  5. 5.
    A.L. Feng, G.L. Wu, Y.Q. Wang, Synthesis, preparation and mechanical property of wood fiber-reinforced poly (vinyl chloride) composites. J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)CrossRefGoogle Scholar
  6. 6.
    A.L. Feng, G.L. Wu, C. Pan, Y.Q. Wang, The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J. Nanosci. Nanotechnol. 17, 3786–3791 (2017)CrossRefGoogle Scholar
  7. 7.
    G.L. Wu, Y.H. Cheng, K.K. Wang, Y.Q. Wang, A.L. Feng, Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci.: Mater. Electron. 27, 5592–5599 (2016)Google Scholar
  8. 8.
    H.C. Liu, Y.H. Zhu, Q.L. Meng, X.W. Lu, S. Kong, Z.W. Huang, P. Jiang, X.H. Bao, Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition. Nano Res. 10, 643–651 (2017)CrossRefGoogle Scholar
  9. 9.
    L.Z. Hao, Y.J. Liu, W. Gao, Z.D. Han, Q.Z. Xue, H.Z. Zeng, Z.P. Wu, J. Zhu, W.L. Zhang, Electrical and photovoltaic characteristics of MoS2/Si p–n junctions. J. Appl. Phys. 117, 114502 (2015)CrossRefGoogle Scholar
  10. 10.
    M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, J.H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Shim, H.Y. Park, D.H. Kang, J.O. Kim, S.H. Jo, Y.K. Park, J.H. Park, Electronic and optoelectronic devices based on two-dimensional materials: from fabrication to application. Adv. Electron. Mater. 3, 1600364 (2017)CrossRefGoogle Scholar
  12. 12.
    A.P. Alivisatos, Nanoscience in the era of global science and global change—cooperative, quantitative, and focused on benefit to humanity. Nano Res. 9, 1–2 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22, 4522–4524 (2010)CrossRefGoogle Scholar
  14. 14.
    C.B. Zhu, X.K. Mu, P.A. Van Aken, Y. Yu, J. Maier, Single-layered ultra small nano plates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Li, Z.Y. Ying, Q.Y. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.L.Y. Tok, Q. Zhang, H. Zhang, Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room reaction temperature. Small 8, 63–67 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Kim, A.H. Konar, High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013)CrossRefGoogle Scholar
  18. 18.
    O.L. Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Kwon, Y.K. Hong, C. Han, I. Omkaroam, W. Choi, S. Kim, Y. Yoon, Giant photo amplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv. Mater. 27, 2224–2230 (2015)CrossRefGoogle Scholar
  20. 20.
    S.Y. Yang, G.W. Shim, S.B. Seo, S.Y. Choi, Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 10, 255–262 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Li, H.W. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1, 33–44 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Xie, Z. Wang, Y.J. Zhan, P. Zhang, R.X. Wu, T. Jiang, S.W. Wu, H. Wang, Y. Zhao, T. Nan, X.H. Ma, Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications. Nanotechnology 28, 084001 (2017)CrossRefGoogle Scholar
  23. 23.
    N.K. Perkgoz, M. Bay, Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition. Nano-Micro Lett. 8, 70–79 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.J. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 8, 966–971 (2012)CrossRefGoogle Scholar
  25. 25.
    Y.C. Lin, W.J. Zhang, J.K. Huang, K.K. Liu, Y.H. Lee, C.T. Liang, C.W. Chu, L.J. Li, Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale. 4, 6637–6641 (2012)CrossRefGoogle Scholar
  26. 26.
    W.Y. Lee, T.M. Besmann, M.W. Stott, Preparation of MoS2 thin films by chemical vapor deposition. J. Mater. Res. 9, 1474–1483 (1994)CrossRefGoogle Scholar
  27. 27.
    K.K. Liu, W.J. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y.M. Shi, H. Zhang, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012)CrossRefGoogle Scholar
  28. 28.
    I. Bilgin, F.Z. Liu, A. Vargas, A. Winchester et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9, 8822–8832 (2015)CrossRefGoogle Scholar
  29. 29.
    J.X. Cheng, T. Jiang, Q.Q. Ji, Y. Zhang, Z.M. Li, Y.W. Shan, Y.F. Zhang, X. Gong, W.T. Liu, S.W. Wu, Kinetic nature of grain boundary formation in as-grown MoS2 monolayers. Adv. Mater. 27, 4069–4074 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Najmaei, Z. Liu, W. Zhou, X.L. Zou, G. Shi, S.D. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapor phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013)CrossRefGoogle Scholar
  31. 31.
    J.P. Shi, D.L. Ma, G.–F. Han, Y. Zhang, Q.Q. Ji, T. Gao, J.Y. Sun, X.J. Song, C. Li, Y.S. Zhang et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8, 10196–10204 (2014)CrossRefGoogle Scholar
  32. 32.
    Z.Y. Lin, Y.D. Zhao, C.J. Zhou, R. Zhong, X.S. Wang, Y.H. Tsang, Y. Chai, Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 5, 18596 (2015)CrossRefGoogle Scholar
  33. 33.
    Y.F. Yu, C. Li, Y. Liu, L.Q. Su, Y. Zhang, L.Y. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013)CrossRefGoogle Scholar
  34. 34.
    I. Bilgin, F.Z. Liu et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9, 8822–8832 (2015)CrossRefGoogle Scholar
  35. 35.
    G.W. Thomson, The Antoine equation for vapor-pressure data. Chem. Rev. 38, 1–39 (1946)CrossRefGoogle Scholar
  36. 36.
    D.R. Stull, Vapor pressure of pure substances. Organic and inorganic compounds. Ind. Eng. Chem. 39, 517–540 (1947)CrossRefGoogle Scholar
  37. 37.
    H.F. Stimson, Heat units and reaction temperature scales for calorimetry. Am. J. Phys. 23, 614 (1995)CrossRefGoogle Scholar
  38. 38.
    J.L. Verble, T.J. Wieting, Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 25, 632–365 (1970)CrossRefGoogle Scholar
  39. 39.
    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)CrossRefGoogle Scholar
  40. 40.
    C. Lee, H.G. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano. 4, 2695–2700 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013)CrossRefGoogle Scholar
  42. 42.
    L. Yang, X.D. Cui, J.Y. Zhang, K. Wang, M. Shen, S.S. Zeng, S.A. Dayeh, L. Feng, B. Xiang, Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 4, 5649 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SHU-SolarE’s R&D Lab, Department of PhysicsShanghai UniversityShanghaiChina
  2. 2.Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina

Personalised recommendations