Skip to main content
Log in

Role of nuclei in controllable MoS2 growth by modified chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The large area and high-quality two-dimensional molybdenum disulfide (2D-MoS2) film has been synthesized by a modified single-zone chemical vapor deposition technique. The influence of gas environment, reaction temperature and gap distance (between MoO3 precursor and substrate) on 2D-MoS2 growth were systematically investigated. A stable gas environment was prerequisite for the formation of 2D-MoS2, and it can be achieved by adjusting the pressure and flow rate of N2 in the furnace tube, which was numerical estimated via Antoine equation. The thickness, quality (uniformity and crystallinity), roughness, and chemical composition of the MoS2 nano-film were characterized by the optical microscopy, scanning electron microscope, Raman spectroscopy, Atomic force microscope, and X-ray photoelectron spectroscopy, respectively. The results showed that the quality of MoS2 nano-film was greatly influenced by the nucleation density on the substrate, which could be controlled by modulating the reaction temperature and gap distance. Moreover, a “frustum-like” model was established to match the practical reaction situation and clarify the internal relationship among reaction temperature, gap distance and the nucleation density of MoS2 film. Finally, a high-quality monolayer MoS2 nano-film, at 800 °C with a gap distance of 3.5 mm, was obtained and verified by experimental and numerical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.Z. Wang, X.B. Zeng, S.X. Wu, Y. Zeng, Y.S. Hu, J. Ding, S. Xu, Effect of Mo concentration on shape and size of monolayer MoS2 crystals by chemical vapor deposition. J. Phys. D 50, 395501 (2017)

    Google Scholar 

  2. S.L. Wong, H.F. Liu, D.Z. Chi, Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides. Prog. Cryst. Growth Charact. Mater. 62, 9–28 (2016)

    CAS  Google Scholar 

  3. Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Y.J. Wang, Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Mater. Res. Bull. 98, 59–63 (2018)

    CAS  Google Scholar 

  4. G.L. Wu, H.J. Wu, K.K. Wang, C.H. Zheng, Y.Q. Wang, A.L. Feng, Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC Adv. 6, 58069–58076 (2016)

    CAS  Google Scholar 

  5. A.L. Feng, G.L. Wu, Y.Q. Wang, Synthesis, preparation and mechanical property of wood fiber-reinforced poly (vinyl chloride) composites. J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)

    CAS  Google Scholar 

  6. A.L. Feng, G.L. Wu, C. Pan, Y.Q. Wang, The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J. Nanosci. Nanotechnol. 17, 3786–3791 (2017)

    CAS  Google Scholar 

  7. G.L. Wu, Y.H. Cheng, K.K. Wang, Y.Q. Wang, A.L. Feng, Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci.: Mater. Electron. 27, 5592–5599 (2016)

    CAS  Google Scholar 

  8. H.C. Liu, Y.H. Zhu, Q.L. Meng, X.W. Lu, S. Kong, Z.W. Huang, P. Jiang, X.H. Bao, Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition. Nano Res. 10, 643–651 (2017)

    CAS  Google Scholar 

  9. L.Z. Hao, Y.J. Liu, W. Gao, Z.D. Han, Q.Z. Xue, H.Z. Zeng, Z.P. Wu, J. Zhu, W.L. Zhang, Electrical and photovoltaic characteristics of MoS2/Si p–n junctions. J. Appl. Phys. 117, 114502 (2015)

    Google Scholar 

  10. M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, J.H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014)

    CAS  Google Scholar 

  11. J. Shim, H.Y. Park, D.H. Kang, J.O. Kim, S.H. Jo, Y.K. Park, J.H. Park, Electronic and optoelectronic devices based on two-dimensional materials: from fabrication to application. Adv. Electron. Mater. 3, 1600364 (2017)

    Google Scholar 

  12. A.P. Alivisatos, Nanoscience in the era of global science and global change—cooperative, quantitative, and focused on benefit to humanity. Nano Res. 9, 1–2 (2016)

    Google Scholar 

  13. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22, 4522–4524 (2010)

    CAS  Google Scholar 

  14. C.B. Zhu, X.K. Mu, P.A. Van Aken, Y. Yu, J. Maier, Single-layered ultra small nano plates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156 (2014)

    CAS  Google Scholar 

  15. H. Li, Z.Y. Ying, Q.Y. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.L.Y. Tok, Q. Zhang, H. Zhang, Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room reaction temperature. Small 8, 63–67 (2012)

    CAS  Google Scholar 

  16. S. Kim, A.H. Konar, High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012)

    Google Scholar 

  17. S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013)

    CAS  Google Scholar 

  18. O.L. Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)

    Google Scholar 

  19. J. Kwon, Y.K. Hong, C. Han, I. Omkaroam, W. Choi, S. Kim, Y. Yoon, Giant photo amplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv. Mater. 27, 2224–2230 (2015)

    CAS  Google Scholar 

  20. S.Y. Yang, G.W. Shim, S.B. Seo, S.Y. Choi, Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 10, 255–262 (2017)

    CAS  Google Scholar 

  21. X. Li, H.W. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1, 33–44 (2015)

    Google Scholar 

  22. Y. Xie, Z. Wang, Y.J. Zhan, P. Zhang, R.X. Wu, T. Jiang, S.W. Wu, H. Wang, Y. Zhao, T. Nan, X.H. Ma, Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications. Nanotechnology 28, 084001 (2017)

    Google Scholar 

  23. N.K. Perkgoz, M. Bay, Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition. Nano-Micro Lett. 8, 70–79 (2016)

    Google Scholar 

  24. Y.J. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 8, 966–971 (2012)

    CAS  Google Scholar 

  25. Y.C. Lin, W.J. Zhang, J.K. Huang, K.K. Liu, Y.H. Lee, C.T. Liang, C.W. Chu, L.J. Li, Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale. 4, 6637–6641 (2012)

    CAS  Google Scholar 

  26. W.Y. Lee, T.M. Besmann, M.W. Stott, Preparation of MoS2 thin films by chemical vapor deposition. J. Mater. Res. 9, 1474–1483 (1994)

    CAS  Google Scholar 

  27. K.K. Liu, W.J. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y.M. Shi, H. Zhang, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012)

    CAS  Google Scholar 

  28. I. Bilgin, F.Z. Liu, A. Vargas, A. Winchester et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9, 8822–8832 (2015)

    CAS  Google Scholar 

  29. J.X. Cheng, T. Jiang, Q.Q. Ji, Y. Zhang, Z.M. Li, Y.W. Shan, Y.F. Zhang, X. Gong, W.T. Liu, S.W. Wu, Kinetic nature of grain boundary formation in as-grown MoS2 monolayers. Adv. Mater. 27, 4069–4074 (2015)

    CAS  Google Scholar 

  30. S. Najmaei, Z. Liu, W. Zhou, X.L. Zou, G. Shi, S.D. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapor phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013)

    CAS  Google Scholar 

  31. J.P. Shi, D.L. Ma, G.–F. Han, Y. Zhang, Q.Q. Ji, T. Gao, J.Y. Sun, X.J. Song, C. Li, Y.S. Zhang et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8, 10196–10204 (2014)

    CAS  Google Scholar 

  32. Z.Y. Lin, Y.D. Zhao, C.J. Zhou, R. Zhong, X.S. Wang, Y.H. Tsang, Y. Chai, Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 5, 18596 (2015)

    CAS  Google Scholar 

  33. Y.F. Yu, C. Li, Y. Liu, L.Q. Su, Y. Zhang, L.Y. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013)

    Google Scholar 

  34. I. Bilgin, F.Z. Liu et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9, 8822–8832 (2015)

    CAS  Google Scholar 

  35. G.W. Thomson, The Antoine equation for vapor-pressure data. Chem. Rev. 38, 1–39 (1946)

    CAS  Google Scholar 

  36. D.R. Stull, Vapor pressure of pure substances. Organic and inorganic compounds. Ind. Eng. Chem. 39, 517–540 (1947)

    CAS  Google Scholar 

  37. H.F. Stimson, Heat units and reaction temperature scales for calorimetry. Am. J. Phys. 23, 614 (1995)

    Google Scholar 

  38. J.L. Verble, T.J. Wieting, Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 25, 632–365 (1970)

    Google Scholar 

  39. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)

    CAS  Google Scholar 

  40. C. Lee, H.G. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano. 4, 2695–2700 (2010)

    CAS  Google Scholar 

  41. S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013)

    CAS  Google Scholar 

  42. L. Yang, X.D. Cui, J.Y. Zhang, K. Wang, M. Shen, S.S. Zeng, S.A. Dayeh, L. Feng, B. Xiang, Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 4, 5649 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 61674099, 61274067 and 60876045), and the R&D Foundation of SHU-SOENs PV Joint Lab (No. SS-E0700601). One of the authors (Wenlei Song) appreciate Dr. Jianwei Shi of Arizona State University for his helpful revision and discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongquan Ma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Gao, M., Zhang, P. et al. Role of nuclei in controllable MoS2 growth by modified chemical vapor deposition. J Mater Sci: Mater Electron 29, 7425–7434 (2018). https://doi.org/10.1007/s10854-018-8733-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8733-9

Navigation