Fructose modified synthesis of ZnO nanoparticles and its application for removal of industrial pollutants from water

Abstract

This research work is an effort towards the purification of industrially polluted water for the savage of the environmental system. Optimized fructose modified ZnO nanoparticles were used as adsorbent as well as a photocatalyst for the removal of dyes from polluted water. Textile synthetic dyes were used as model pollutants. Structural and optical properties of the synthesized fructose modified ZnO nanoparticles were analyzed using XRD, SEM, TEM, and UV–Vis spectrophotometer. Wurtzite hexagonal phase with the quasi-spherical shape of diameter 14–40 nm of fructose modified ZnO nanoparticles were obtained by optimizing various reaction parameters. As compared to the bulk, fructose modified ZnO nanoparticles show a blue shift in the excitation absorption; confirming quantum confinement. The effect of pH, time, and initial dye concentration was investigated on the dye removal efficiency of the synthesized fructose modified ZnO nanoparticles. Through the kinetic study of dye removal, it has been observed that the adsorption and photodegradation phenomenon followed pseudo-first order kinetics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    M. Asgher, H.N. Bhatti, M. Asharf, R.L. Legge, Biodegradation 19, 771–783 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Adv. Colloid Interface Sci. 209, 112–172 (2014)

    Article  Google Scholar 

  3. 3.

    R. Kant, Textile dyeing industry an environment hazard. Nat. Sci. 4, 22–26 (2012)

    CAS  Google Scholar 

  4. 4.

    W.S.W. Ngah, L.C. Teong, M.A.K.M. Hanafiah, Carbohydr. Polym. 83, 1446–1456 (2011)

    Article  Google Scholar 

  5. 5.

    K. Chennakesavulu, G.R. Reddy, S.S. Prasath, S. Supriya, S. Sivanesan, Adv. Mater. Lett. 6, 518–526 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    R.A. Damodar, S.J. You, S.H. Ou, Sep. Purif. Technol. 76, 64–71 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    M.N. Chong, B.J. Christopher, W.K. Chow, C. Saint, Water Res. 44, 2997–3027 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    J. Guo, S. Yuan, W. Jiang, H. Yue, Z. Cui, B. Liang, RSC Adv. 6, 4090–4100 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    F. Liu, Y.H. Leung, A.B. Djurisic, A.M.C. Ng, W.K. Chan, J. Phys. Chem. C117, 12218–12228 (2013)

    Google Scholar 

  10. 10.

    A. Azam, F. Ahmed, N. Arshi, M. Chaman, A.H. Naqvi, J. Alloys Compd. 496, 399–402 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    A.K. Radzimska, T. Jesionowski, Materials, 7, 2833–2881 (2014)

    Article  Google Scholar 

  12. 12.

    L. Yuan, D. Xiang, J.K. Yu, J. Ceram Process. Res. 14, 517–520 (2013)

    Google Scholar 

  13. 13.

    M. Bagheri, A.R. Mahjou, B. Mehri RSC Adv. 4, 21757–21764 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534–540 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E.A. Zhukov, T. Yoa, Appl. Phys. Lett. 81, 1231–1235 (2002)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Appl. Phys. Lett. 85, 3834–3835 (2004)

    Google Scholar 

  17. 17.

    M.K. Debnath, S. Karmakar, Mater. Lett. https://doi.org/10.10106/j.matlet.2013.08.069

  18. 18.

    F. Davar, A. Majedi, A. Mirzaei, J. Am. Ceram. Soc. 98, 1739–1746 (2015). https://doi.org/10.1111/jace.13467

    CAS  Article  Google Scholar 

  19. 19.

    Z. Li, T. Yang, Biomed. Eng.-Front. Challenges 319–334 (2011)

  20. 20.

    S. Panigrahi, S. Kundu, S.K. Ghosh, S. Nath, T. Pal, J. Nanopart. Res. 6, 411–414 (2004)

    CAS  Article  Google Scholar 

  21. 21.

    C. Pettegrew, Z. Dong, M.Z. Muhi, S. Pease, M. AbdulMottaleb, M.R. Islam, ISRN Nanotechnol. (2014). https://doi.org/10.1155/2014/480284

    Article  Google Scholar 

  22. 22.

    A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Indian J. Mater. Sci. (2015). https://doi.org/10.1155/2015/601827

    Article  Google Scholar 

  23. 23.

    A. Stephen, S. Dhanavel, E.A.K. Nivethaa, V. Narayanan, Int. J. Chem. Tech. Res. 6, 1880–1882 (2014)

    Google Scholar 

  24. 24.

    M.S. Gowda, P.S.K. Kumar, R.M. Kulkarni, Int. Res. J. Environ. Sci. 3, 20–26 (2014)

    CAS  Google Scholar 

  25. 25.

    N.P. Mohabansi, V.B. Patil, N. Yenkie, Rasayan J. Chem. 4, 814–819 (2011)

    CAS  Google Scholar 

  26. 26.

    R.D.C. Soltani, A. Rezaee, R. Rezaee, M. Safari, H. Hashemi, J. Adv. Environ. Health Res. 3, 8–14 (2015)

    CAS  Google Scholar 

  27. 27.

    B. Malakar, A.T. Miah, C. Kalita, P. Saikia, Chem. Sci. Trans. 4, 788–798 (2015)

    CAS  Google Scholar 

  28. 28.

    Sh. Aghabeygi, M. Zare-Dehnavi, Int. J. Nano Dimension. 6, 297–304 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by lab facilities at Desh Bhagat University, Mandi Gobindgarh-Punjab, Thapar University, Patiala-Punjab, SGGSWU, Fatehgarh Sahib-Punjab and SAIF/CIL Panjab University, Chandigarh.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Soumen Basu or Mohit Rawat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Singh, J., Jolly, S.S. et al. Fructose modified synthesis of ZnO nanoparticles and its application for removal of industrial pollutants from water. J Mater Sci: Mater Electron 29, 7364–7371 (2018). https://doi.org/10.1007/s10854-018-8726-8

Download citation