The synthesis and application of TiO2 microspheres as scattering layer in dye-sensitized solar cells

  • Weiguo Zhang
  • Jiabao Gu
  • Suwei Yao
  • Hongzhi Wang


Mesoporous TiO2 microspheres have been synthesized via a simple one-plot hydrothermal method and were used as the light scattering layer on top of the P25 TiO2 compact layer to form a double-layer film based photoanode for the dye-sensitized solar cell (DSSC). Characteristics and light scattering properties were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen sorption analysis and ultraviolet–visible spectroscopy. Photovoltaic performance of the fabricated DSSC was also investigated. It showed that photoelectric conversion efficiency of the double-layer film based DSSC was increased to 5.61% compared with single P25 compact layer film based (2.67%) and single TiO2 microspheres layer film based (2.14%) DSSC. Improvement of DSSC performance can be attributed to excellent light scattering capability given by mesoporous TiO2 microspheres. Electrochemical impedance spectra analysis also proved that double-layered structure can result in prolonged exciton lifetime, improved charge collection efficiency and decreased charge recombination.

Supplementary material

10854_2018_8725_MOESM1_ESM.docx (147 kb)
Supplementary material 1 (DOCX 146 KB)


  1. 1.
    J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sustain. Energy Rev. 68, 234–246 (2017)CrossRefGoogle Scholar
  2. 2.
    M.A. Al-Alwani, A.B. Mohamad, N.A. Ludin, A.A.H. Kadhum, K. Sopian, Dye-sensitised solar cells: development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renew. Sustain. Energy Rev. 65, 183–213 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011)CrossRefGoogle Scholar
  5. 5.
    J.N. de Freitas, A.F. Nogueira, M.A. De Paoli, New insights into dye-sensitized solar cells with polymer electrolytes. J. Mater. Sci. 19(30), 5279–5294 (2009)Google Scholar
  6. 6.
    M. Roy, P. Balraju, M. Kumar, G. Sharma, Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2. Sol. Energy Mater. Sol. Cells 92(8), 909–913 (2008)CrossRefGoogle Scholar
  7. 7.
    Y. Alivov, Z. Fan, Dye-sensitized solar cells using TiO2 nanoparticles transformed from nanotube arrays. J. Mater. Sci. 45(11), 2902–2906 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high performance dye-sensitized solar cells. Adv. Mater. 21(21), 2206–2210 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells. Chem. Commun. 15, 2011–2013 (2005)CrossRefGoogle Scholar
  10. 10.
    F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, Y.B. Cheng, Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv. Funct. Mater. 20(8), 1301–1305 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005)CrossRefGoogle Scholar
  12. 12.
    W. Yang, P. Yang, Q. Tang, Double-layered TiO2 anodes from nanorods and nanoparticles for dye-sensitized solar cells. Mater Lett. 180, 228–230 (2016)CrossRefGoogle Scholar
  13. 13.
    L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, G. Gigli, Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114(9), 4228–4236 (2014)CrossRefGoogle Scholar
  14. 14.
    W.Q. Wu, J.Y. Liao, H.Y. Chen, X.Y. Yu, C.Y. Su, D.B. Kuang, Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. J. Mater. Chem. 22(34), 18057–18062 (2012)CrossRefGoogle Scholar
  15. 15.
    B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110(32), 15932–15938 (2006)CrossRefGoogle Scholar
  16. 16.
    J. Luo, L. Gao, J. Sun, Y. Liu, A bilayer structure of a titania nanoparticle/highly-ordered nanotube array for low-temperature dye-sensitized solar cells. RSC Adv. 2(5), 1884–1889 (2012)CrossRefGoogle Scholar
  17. 17.
    K.C. Sun, M.B. Qadir, S.H. Jeong, Hydrothermal synthesis of TiO2 nanotubes and their application as an over-layer for dye-sensitized solar cells. RSC Adv. 4(44), 23223–23230 (2014)CrossRefGoogle Scholar
  18. 18.
    Y.P. Lin, S.Y. Lin, Y.C. Lee, Y.W. Chen-Yang, High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes. J. Mater. Chem. A 1(34), 9875–9884 (2013)CrossRefGoogle Scholar
  19. 19.
    D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, D. Xu, Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells. J. Mater. Chem. 22(23), 11665–11671 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Jiang, F. Gu, X. Ren, Y. Wang, W. Shao, C. Li, G. Huang, Efficient light scattering from one-pot solvothermally derived TiO2 nanospindles. Ind. Eng. Chem. Res. 50(15), 9003–9008 (2011)CrossRefGoogle Scholar
  21. 21.
    R. Boppella, A. Mohammadpour, S. Illa, S. Farsinezhad, P. Basak, K. Shankar, S.V. Manorama, Hierarchical rutile TiO2 aggregates: a high photonic strength material for optical and optoelectronic devices. Acta Mater. 119, 92–103 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Illa, R. Boppella, S.V. Manorama, P. Basak, Mesoporous assembly of cuboid anatase nanocrystals into hollow spheres: realizing enhanced photoactivity of high energy {001} facets. J. Phys. Chem. C 120, 18028–18038 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Guan, L. Song, Y. Zhou, X. Yin, X. Xie, J. Xiong, Enhanced light harvesting of dye-sensitized solar cells with TiO2 microspheres as light scattering layer. Appl. Phys. A 123, (2017)Google Scholar
  24. 24.
    Y. Cui, X. He, M. Zhu, X. Li, Preparation of anatase TiO2 microspheres with high exposure (001) facets as the light-scattering layer for improving performance of dye-sensitized solar cells. J. Alloys Compd. 694, 568–573 (2017)CrossRefGoogle Scholar
  25. 25.
    H.J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, N.G. Park, Size-dependent scattering efficiency in dye-sensitized solar cell. Inorg. Chim. Acta 361, 677–683 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, Y. Cheng, K. Chen, G. Yang, Z. Peng, Q. Bao, R. Wang, W. Chen, Enhanced light-harvesting of the conical TiO2 nanotube arrays used as the photoanodes in flexible dye-sensitized solar cells. Electrochim. Acta. 146, 838–844 (2014)CrossRefGoogle Scholar
  27. 27.
    J.D. Peng, C.M. Tseng, R. Vittal, K.C. Ho, Mesoporous anatase-TiO2 spheres consisting of nanosheets of exposed (001)-facets for [Co(byp)3]2+/3+ based dye-sensitized solar cells. Nano Energy 22, 136–148 (2016)CrossRefGoogle Scholar
  28. 28.
    X. He, X. Li, M. Zhu, The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells. J. Power Sources 333, 10–16 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Yu, J. Fan, B. Cheng, Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. J. Power Sources 196(18), 7891–7898 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Yu, J. Fan, K. Lv, Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2(10), 2144–2149 (2010)CrossRefGoogle Scholar
  31. 31.
    Z.Q. Li, Y.P. Que, L.E. Mo, W.C. Chen, Y. Ding, Y.M. Ma, L. Jiang, L.H. Hu, S.Y. Dai, One-pot synthesis of mesoporous Tio2 micropheres and its application for high-efficiency dye-sensitized solar cells. ACS. Appl. Mater. Inter. 7(20), 10928–10934 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Zhang, Y. Rui, Y. Li, Q. Zhang, H. Wang, Quasi-monodispersed anatase TiO2 submicrospheres as current-contributed scattering particles for dye-sensitized solar cells. Electrochim. Acta 204, 227–234 (2016)CrossRefGoogle Scholar
  33. 33.
    D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, Z. Bian, Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J. Phys. Chem. C 112, 8486–8494 (2008)CrossRefGoogle Scholar
  34. 34.
    P.R.F. Barnes, A.Y. Anderson, S.E. Koops, J.R. Durrant, Electron injection efficiency and diffusion length in dye-sensitised solar cells derived from incident photon conversion efficiency measurements. J. Phys. Chem. C 113, 12615–12615 (2009)CrossRefGoogle Scholar
  35. 35.
    J.T. Park, D.K. Roh, W.S. Chi, R. Patel, J.H. Kim, Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells. J. Ind. Eng. Chem. 18(1), 449–455 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Xu, X. Tao, D.T. Wang, Y.Z. Zheng, J.F. Chen, Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films. Electrochim. Acta 55(7), 2280–2285 (2010)CrossRefGoogle Scholar
  37. 37.
    N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, L. Han, New approach to low-cost dye-sensitized solar cells with back contact electrodes. Chem. Mater. 20(15), 4974–4979 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Weiguo Zhang
    • 1
  • Jiabao Gu
    • 1
  • Suwei Yao
    • 1
  • Hongzhi Wang
    • 1
  1. 1.Department of Applied Chemistry, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations