Nanocrystalline NixCo(0.5−x)Zn0.5Fe2O4 ferrites: fabrication through co-precipitation route with enhanced structural, magnetic and photo-catalytic activity

  • Abdelmajid Lassoued
  • Mohamed Saber Lassoued
  • Brahim Dkhil
  • Salah Ammar
  • Abdellatif Gadri
Article
  • 45 Downloads

Abstract

A series of Ni-substituted NixCo(0.5−x)Zn0.5Fe2O4 with x = (0.1, 0.2, 0.3, 0.4) spinel ferrites were prepared by co-precipitation method to investigate the effects of Ni compositional variation in the structural, optical, magnetic and photo-catalytic activity. The thermal decomposition of NixCo(0.5−x)Zn0.5Fe2O4 was investigated by TGA/DTA. XRD results revealed that all the samples were single-phase of cubic spinel with Fd-3m space group. The lattice constant and average particle size decreased simultaneously with the increase in Ni doping amount. TEM and SEM analysis showed the monodispersion and cubic-like nanostructure. Two prominent stretching bands were observed in FT-IR spectra around 400–600 cm−1. These two bands confirmed the spinel structure of the prepared nanoparticles. Raman spectroscopy is used to verify that we have synthesized spinel ferrites and determines their phonon modes. The optical study UV–visible is used to calculate the optical band gap energies. The products exhibited the attractive magnetic properties with high saturation magnetization, which were examined by a vibrating sample magnetometer. On the other part, the photocatalytic activity of our compounds was studied using methylene blue as model organic pollutants, where the results showed that an appropriate amount of Ni dopant could greatly increase the amount of hydroxyl radicals generated by the ferrite nanoparticles, which were responsible for the obvious increase in the photo-catalytic activity.

Notes

Acknowledgements

The present work was supported by the Research Funds of Electrochemistry, Materials and Environment Research Unit UREME (UR17ES45), Faculty of Sciences Gabes University, Tunisia and Structures, Properties and Modeling of Solids (SPMS) Laboratory, University Paris-Saclay, France.

References

  1. 1.
    J.P. Singh, R.S. Payal, R.C. Srivastava, H.M. Agrawal, P. Chand, J. Phys. 217, 012108 (2010)Google Scholar
  2. 2.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M. Reza Ganjali, A. Badiei, J. Res. Chem. Intermed. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Sutka, M. Stingaciu, D. Jakovlevs, G. Mezinskis, Ceram. Int. 40, 2519–2522 (2014)CrossRefGoogle Scholar
  4. 4.
    P.P. Hankare, R.P. Patil, A.V. Jadhav, K.M. Garadkar, R. Sasikala, Appl. Catal. B 107, 333–339 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Tyagi, H.B. Baskey, R.C. Agarwala, V. Agarwala, T.C. Shami, Trans. Indian Inst. Metals 64, 607–614 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Sloczynski, J. Janas, T. Machej, J. Rynkowski, J. Stoch, Appl. Catal. B 24, 45–60 (2000)CrossRefGoogle Scholar
  7. 7.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Reza Ganjali, A. Badiei, J. Rare Earths 35, 374–381 (2017)CrossRefGoogle Scholar
  8. 8.
    V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science 291, 2115 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Pena, J. Fierro, Chem. Rev. 101, 1981–2018 (2001)CrossRefGoogle Scholar
  10. 10.
    P. Ajayan, P. Redlich, M. Ruhle, J. Microsc. 185, 275–282 (1997)CrossRefGoogle Scholar
  11. 11.
    A. Baykal, N. Kasapoglu, Z. Durmus, H. Kavas, M.S. Toprak, Y. Koseoglu, Turk. J.Chem. 33, 33–45 (2009)Google Scholar
  12. 12.
    X. Wang, G. Yang, Z. Zhang, L. Yan, J. Meng, Dyes Pigments 74, 269–272 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Yang, C. Zhang, X. Shi, H. Hu, X. Du, Y. Fang, Y. Ma, H. Wu, S. Yang, Biomaterials 31, 36673673 (2010)CrossRefGoogle Scholar
  14. 14.
    M.A. Ahmed, S.I. El-dek, S.F. Mansour, N. Okasha, Solid State Sci. 13, 1180–1186 (2011)CrossRefGoogle Scholar
  15. 15.
    V. Musat, O. Potecasu, R. Belea, P. Alexandru, Mater. Sci. Eng. B 167, 85–90 (2010)CrossRefGoogle Scholar
  16. 16.
    A.T. Raghavender, N.H. Hong, J. Magn. Magn. Mater. 323, 2145–2147 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Guo, G. Zhang, J.Yu,H. Li, X.S. Zhao, Colloids Surf. A 395, 168–174 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Yao, Q. Zeng, G. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J. Jiang, J. Phys. Chem. C 111, 12274–12278 (2007)CrossRefGoogle Scholar
  19. 19.
    L. Wang, Q. Zhou, F. Li, Physica Status Solidi (B) 241, 377–382 (2004)CrossRefGoogle Scholar
  20. 20.
    A. Kundu, C. Upadhyay, H. Verma, Phys. Lett. A 311, 410–415 (2003)CrossRefGoogle Scholar
  21. 21.
    G. Kianpour, F. Soofivand, M. Badiei, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)Google Scholar
  22. 22.
    X. Hu, P. Guan, X. Yan, China Part. 2, 135–137 (2004)CrossRefGoogle Scholar
  23. 23.
    R. Zhang, J. Huang, J. Zhao, Z. Sun, Y. Wang, Energy Fuels 21, 2682–2687 (2007)CrossRefGoogle Scholar
  24. 24.
    B.R. Reddy, T. Sivasankar, M. Sivakumar, V.S. Moholkar, Ultrason. Sonochem. 17, 416–426 (2010)CrossRefGoogle Scholar
  25. 25.
    M.M. Rashad, E.M. Elsayed, M.M. Moharam, R.M. Abou-Shahba, A.E. Saba, J. Alloys Compd. 486, 759–767 (2009)CrossRefGoogle Scholar
  26. 26.
    P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Mater. Chem. Phys. 116, 207–213 (2009)CrossRefGoogle Scholar
  27. 27.
    G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, K. Lal, J. Magn. Magn. Mater. 322, 1015–1019 (2010)CrossRefGoogle Scholar
  28. 28.
    H. Malik, A. Mahmood, K. Mahmood, M.Y. Lodhi, M.F. Warsi, I. Shakir, H. Wahab, M. Asghar, M.A. Khan, Ceram. Int. 40, 9439–9444 (2014)CrossRefGoogle Scholar
  29. 29.
    M.A. Khan, M. Sabir, A. Mahmood, M. Asghar, K. Mahmood, M. Afzal Khan, I. Ahmad, M. Sher, M.F. Warsi, J. Magn. Magn. Mater. 360, 188–192 (2014)CrossRefGoogle Scholar
  30. 30.
    V. Pallai, D.O. Shah, J. Magn. Magn. Mater. 163, 243–248 (1996)CrossRefGoogle Scholar
  31. 31.
    M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 51, 7764–7773 (2012)CrossRefGoogle Scholar
  32. 32.
    Y.B. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, K. Sadhana, J. Phys. B. 502, 181–186 (2016)CrossRefGoogle Scholar
  33. 33.
    J.M. Yang, F.S. Yen, J. Alloys Compd. 450, 387–394 (2008)CrossRefGoogle Scholar
  34. 34.
    A. Lassoued, M. Ben hassine, F. Karolak, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci.: Mater. Electron. 28, 18857–18864 (2017)Google Scholar
  35. 35.
    S. Kanagesan, M. Hashim, S. Tamilselvan, N.B. Alitheen, I. Ismail, M. Syazwan, M.M.M. Zuikimi, J. Nanomater. Biostruct. 8, 1601–1610 (2013)Google Scholar
  36. 36.
    A. Lassoued, M.S. Lassoued, F. Karolak, S. García-Granda, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci.: Mater. Electron. 28, 18480–18488 (2017)Google Scholar
  37. 37.
    A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, J. Phys. E 97, 328–334 (2018)CrossRefGoogle Scholar
  38. 38.
    B.D. Cullity, Elements of X-ray diffraction Reading (Addison-Wesley, Reading, 1987)Google Scholar
  39. 39.
    C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122, 6263–6267 (2000)CrossRefGoogle Scholar
  40. 40.
    A.A. El-Sayed, Ceram. Int. 28, 363–367 (2002)CrossRefGoogle Scholar
  41. 41.
    A.T. Raghavender, N. Biliškov, Ž Skoko, Mater. Lett. 65, 677–680 (2011)CrossRefGoogle Scholar
  42. 42.
    I. Zalite, G. Heidemane, M. Kodols, J. Grabis, M. Maiorov, Mater. Sci. 18, 1392–1320 (2012)Google Scholar
  43. 43.
    S. Singhal, J. Singh, S.K. Barthwal, K. Chandra, J. Solid State Chem. 178, 3183–3189 (2005)CrossRefGoogle Scholar
  44. 44.
    A. Pradeep, G. Chandrasekaran, Mater. Lett. 60, 371–374 (2006)CrossRefGoogle Scholar
  45. 45.
    J. Chandradass, A.H. Jadhav, K.H. Kim, H. Kim, J. Alloys Compd. 517, 164–169 (2012)CrossRefGoogle Scholar
  46. 46.
    P. Yaseneva, M. Bowker, G. Hutchings, Phys. Chem. Chem. Phys. 13, 18609–18614 (2011)CrossRefGoogle Scholar
  47. 47.
    L. Li, Sol Gel Sci. Technol. 58, 677–681 (2011)CrossRefGoogle Scholar
  48. 48.
    D. Varshney, K. Verma, A. Kumar, J.Mol. Struct. 1006, 447–452 (2011)CrossRefGoogle Scholar
  49. 49.
    A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Mol. Struct. 1148, 276–281 (2017)CrossRefGoogle Scholar
  50. 50.
    A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Results Phys. 7, 3007–3015 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Mol. Struct. 1141, 99–106 (2017)CrossRefGoogle Scholar
  52. 52.
    M.T. Jamil, J. Ahmad, S.H. Bukhari, T. Sultan, M.Y. Akhter, H. Ahmad, G. Murtaza, J. Ovonic Res. 13, 45–53 (2017)Google Scholar
  53. 53.
    S. Chakrabarty, A. Dutta, M. Pal, J. Alloys Compd. 625, 216–223 (2015)CrossRefGoogle Scholar
  54. 54.
    N. Singh, A. Agarwal, S. Sanghi, P. Singh, J. Magn. Magn. Mater. 323, 486–492 (2011)CrossRefGoogle Scholar
  55. 55.
    A.C.F.M. Costa, E. Tortella, M.R. Morelli, R.H.G.A. Kiminami, J. Magn. Magn. Mater. 256, 174–182 (2003)CrossRefGoogle Scholar
  56. 56.
    K.H. Wu, T.H. Ting, G.P. Wang, C.C. Yang, B.R. Mc, Garvey, Mater. Res. Bull. 40, 2080–2088 (2005)CrossRefGoogle Scholar
  57. 57.
    B.P. Rao, A. Mahesh Kumar, K.H. Rao, Y.L.N. Murthy, O.F. Caltun, I. Dumitru, L. Spinu, J. Optoelctron. Adv. Mater. 8, 1703–1705 (2006)Google Scholar
  58. 58.
    A.A.K.M. Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, J. Magn. Magn. Mater. 312, 210–219 (2007)CrossRefGoogle Scholar
  59. 59.
    W. Yan, W. Jiang, Q. Zhang, Y. Li, H. Wang, Mater. Sci. Eng. B 171, 144–148 (2010)CrossRefGoogle Scholar
  60. 60.
    L.R. Penn, J. Phys. Chem. B. 108, 12707–12712 (2004)CrossRefGoogle Scholar
  61. 61.
    B. Jia, L. Gao, Crystal Growth Design 8, 1372–1376 (2008)CrossRefGoogle Scholar
  62. 62.
    S. Atiq, M. Majeed, A. Ahmad, S. Kumail Abbas, M. Saleem, S. Riaz, S. Naseem, J. Ceram. Int. 43, 2486–2494 (2017)CrossRefGoogle Scholar
  63. 63.
    W. Smith, Y.P. Zhao, Catal. Commun. 10, 1117–1121 (2009)CrossRefGoogle Scholar
  64. 64.
    M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. B 108, 17269–17273 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abdelmajid Lassoued
    • 1
    • 2
  • Mohamed Saber Lassoued
    • 1
  • Brahim Dkhil
    • 2
  • Salah Ammar
    • 1
  • Abdellatif Gadri
    • 1
  1. 1.Unité de Recherche Electrochimie, Matériaux et Environnement UREME (UR17ES45), Faculté des Sciences de GabèsUniversité de GabèsGabèsTunisia
  2. 2.Laboratoire Structures, Propriétés et Modélisation des Solides CentraleSupélecCNRS-UMR8580, Université Paris-SaclayParis-SaclayFrance

Personalised recommendations