Multiferroic properties of Ba0.995Fe0.005Ti0.995Mn0.005O3 synthesized by glycine assisted sol gel method

  • Soumya Rajan
  • P. M. Mohammed Gazzali
  • Lidia Okrasa
  • G. Chandrasekaran


Magnetic and ferroelectric properties in nanoscale are interesting topic to deal with. The primary interest is to understand the effect of simple, fast and cost effective sol gel method on the magnetic and electrical properties of Ba0.995Fe0.005Ti0.995Mn0.005O3 compounds. The study unravels the strategy for realizing multiferrocity of this composition by changing the processing temperature. Structural study confirms the infusion of Fe, Mn into the BaTiO3 lattice and its subsequent effects on the pseudo cubic and tetragonal phases. Morphological results manifest the formation of nanoparticles and evolution of grain growth upon increasing the processing temperature. Incorporation of Fe, Mn and its substantial effects on the various polymorphs of BaTiO3 is clearly portrayed by dielectric results. Room temperature ferroelectric measurements reveal the electric polarization in them. Magnetic measurements show an unusual high coercivity of 4000 Oe and its transformation to a completely paramagnetic behaviour with the subsequent changes in their phase. Thus, the pseudo cubic phase aids to retain the ferroelectric polarization with simultaneous presence of magnetic signature hints their possibility towards fruitful multi-functionality.



The authors thank DST-FIST-India for its grant to Department of Physics, Central Instrumentation Facility (CIF), Pondicherry University, Puducherry, India and UGC-MRP F.No.39-489/2010 (SR) for different facilities and funding which are used in the present study. The authors are grateful to Dr. R. N. Bhowmik, Department of Physics, Pondicherry University, Puducherry, for his help in P–E loop measurements. The authors would like to thank Department of Nanoscience and Nanotechnology, Bharathiyar University for FESEM. The authors SR and MG thank UGC, New Delhi, India for financial support in the form of UGC-RGNF, UGC-BSR respectively.


  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    P. Kumar, Integr. Ferroelectr. 131, 25 (2011)CrossRefGoogle Scholar
  3. 3.
    C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  4. 4.
    S.K. Das, R.N. Mishra, B.K. Roul, Solid State Commun. 191, 19 (2014)CrossRefGoogle Scholar
  5. 5.
    F. Lin, W. Shi, J. Alloys Compd. 475, 64 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.-H. Lin, S. Zhang, C. Deng, Y. Zhang, X. Wang, C.-W. Nan, Appl. Phys. Lett. 92, 112501 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Tong, Y.-H. Lin, S. Zhang, Y. Wang, C.-W. Nan, J. Appl. Phys. 104, 066108 (2008)CrossRefGoogle Scholar
  8. 8.
    L. Yang, H. Qiu, L. Pan, Z. Guo, M. Xu, J. Yin, X. Zhao, J. Magn. Magn. Mater. 350, 1 (2014)CrossRefGoogle Scholar
  9. 9.
    D. Cao, B. Liu, H. Yu, W. Hu, M. Cai, Eur. Phys. J. B 88, 75 (2015)CrossRefGoogle Scholar
  10. 10.
    N.V. Dang, N.T. Dung, P.T. Phong, I.-J. Lee, Phys. B 457, 103 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Valant, I. Arčon, I. Mikulska, D. Lisjak, Chem. Mater. 25, 3544 (2013)CrossRefGoogle Scholar
  12. 12.
    K.C. Verma, R.K. Kotnala, Mater. Res. Exp. 3, 055006 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Chem. Eur. J. 22, 8864 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Wu, G. Wu, L. Wang, Powder Technol. 269, 443 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Li, Z. Liao, F. Fang, X. Wang, L. Li, J. Zhu, Appl. Phys. Lett. 105, 182901 (2014)CrossRefGoogle Scholar
  17. 17.
    N. Maikhuri, A.K. Panwar, A.K. Jha, J. Appl. Phys. 113, 17D915 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Ray, P. Mahadevan, S. Mandal, S.R. Krishnakumar, C.S. Kuroda, T. Sasaki, T. Taniyama, M. Itoh, Phys. Rev. B 77, 104416 (2008)CrossRefGoogle Scholar
  19. 19.
    Z. Ristanovic, A. Kalezic-Glisovic, N. Mitrovic, S. Djukic, D. Kosanovic, A. Maricic, Sci. Sinter. 47, 3 (2015)CrossRefGoogle Scholar
  20. 20.
    C.S. Devi, M. Vithal, G.S. Kumar, G. Prasad, J. Mater. Sci.: Mater. Electron. 22, 1855 (2011)Google Scholar
  21. 21.
    X. Zhao, W. Chen, L. Zhang, J. Gao, L. Zhong, Appl. Phys. A 118, 931 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Zheng, K. Zhu, Q. Wu, J. Liu, J. Qiu, J. Cryst. Growth 363, 300 (2013)CrossRefGoogle Scholar
  23. 23.
    F. Lin, W. Shi, Phys. B 407, 451 (2012)CrossRefGoogle Scholar
  24. 24.
    T.L. Phan, P. Zhang, D. Grinting, S.C. Yu, N.X. Nghia, N.V. Dang et al., J. Appl. Phys. 112, 013909 (2012)CrossRefGoogle Scholar
  25. 25.
    T. Chakraborty, S. Ray, J. Alloy. Compd. 610, 271 (2014)CrossRefGoogle Scholar
  26. 26.
    S.K. Das, P.P. Rout, S.K. Pradhan, B.K. Roul, J. Adv. Ceram. 1, 241 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Rajan, P.M.M. Gazzali, G. Chandrasekaran, J. Alloys Compd. 656, 98 (2016)CrossRefGoogle Scholar
  28. 28.
    M.D.P.M. Gazzali, A.P. Blessington Selvadurai, V. Anbarasu, C. Murugesan, G. Chandrasekaran, AIP Conf. Proc. 1447, 1217 (2012)CrossRefGoogle Scholar
  29. 29.
    N. Maso, H. Beltrn, E. Cordoncillo, P. Escribano, A.R. West, J. Mater. Chem. 16, 1626 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)CrossRefGoogle Scholar
  31. 31.
    B.D. Cullity, Elements of X-Ray Diffraction. (Addison-Wesley Metallurgy Series, Massachusetts, 1956)Google Scholar
  32. 32.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, J. Alloys Compd. 652, 346 (2015)CrossRefGoogle Scholar
  33. 33.
    G. Wu, Y. Cheng, F. Xiang, Z. Jia, Q. Xie, G. Wu, H. Wu, Mater. Sci. Semicond. Process. 41, 6 (2016)CrossRefGoogle Scholar
  34. 34.
    G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Mater. Lett. 144, 157 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Hou, Z. Zhang, W. Preis, W. Sitte, G. Dehm, J. Eur. Ceram. Soc. 31, 763 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Jayanthi, T.R.N. Kutty, J. Mater. Sci.: Mater. Electron. 19, 615 (2007)Google Scholar
  37. 37.
    R.N. Bhowmik, R. Ranganathan, R. Nagarajan, B. Ghosh, S. Kumar, Phys. Rev. B 72, 094405 (2005)CrossRefGoogle Scholar
  38. 38.
    P.M. Md Gazzali, G. Chandrasekaran, J. Mater. Sci.: Mater. Electron. 25, 702 (2014)Google Scholar
  39. 39.
    N.A. Spaldin, Magnetic materials: Fundamentals and applications, Second edn. (Cambridge university press, NewYork, 2003)Google Scholar
  40. 40.
    S. Blundell, Magnetism in Condensed Matter, First edn. (Oxford University Press, Newyork, 2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Soumya Rajan
    • 1
  • P. M. Mohammed Gazzali
    • 1
  • Lidia Okrasa
    • 2
  • G. Chandrasekaran
    • 1
  1. 1.Magnetism and Magnetic Materials Laboratory, Department of PhysicsPondicherry UniversityPondicherryIndia
  2. 2.Department of Molecular PhysicsLodz University of TechnologyLodzPoland

Personalised recommendations