Effects of Al substitution on the properties of NiZnCo ferrite nanopowders

  • Le-Zhong Li
  • Xiao-Xi Zhong
  • Rui Wang
  • Xiao-Qiang Tu
  • Lei He


Al-substituted NiZnCo ferrite nanopowders, Ni0.4Zn0.5Co0.1Al x Fe2−xO4 (0 ≤ x ≤ 0.20), were synthesized by sol–gel auto-combustion method. The influence of Al-substituted NiZnCo ferrite nanopowders on the structural and electromagnetic properties have been studied. The results of TG–DTA show that the precursor decomposition and ferrite formation occurs around 220 °C. The XRD data shows that the lattice constant, nanopowder size and X-ray theoretical density decrease with Al concentration increasing. Ms increases with Al concentration increasing when x ≤ 0.10, and then decreases when x > 0.10. At the same time, Hc decreases with Al concentration increasing when x ≤ 0.10, and then increases when x > 0.10. The Néel temperature decreases with Al substitution increasing. The temperature dependence of dc resistivity of the ferrite nanopowders shows the metal–semiconductor transition behavior. And the influence of Al substitution on the temperature dependence of dc resistivity is investigated.



This work was supported by the National Natural Science Foundation of China under Grant No. 51502025.


  1. 1.
    M.S. Khandekar, R.C. Kambale, J.Y. Patil, Y.D. Kolekar, S.S. Suryavanshi, Effect of calcination temperature on the structural and electrical properties of cobalt ferrite synthesized by combustion method. J. Alloys Compd. 509, 1861–1865 (2011)CrossRefGoogle Scholar
  2. 2.
    F. Li, J.J. Liu, D.G. Evans, X. Duan, Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem. Mater. 16, 1597–1602 (2004)CrossRefGoogle Scholar
  3. 3.
    S.T. Alone, S.E. Shirsath, R.H. Kadam, K.M. Jadhav, Chemical synthesis, structural and magnetic properties of nano-structured Co-Zn-Fe-Cr ferrite. J. Alloys Compd. 509, 5055–5060 (2011)CrossRefGoogle Scholar
  4. 4.
    L. Huan, X. Tang, H. Su, H. Zhang, Y. Jing, Effects of SiO2 concentration on the DC-bias-superposition characteristics of the NiCuZn ferrites. J. Mater. Sci.: Mater. Electron. 26, 3275–3281 (2015)Google Scholar
  5. 5.
    M. Ušáková, J. Lukáč, R. Dosoudil, V. Jančárik, A. Grusková, E. Ušák, J. Sláma, J. Šubrt, Influence of Cu2+ ions on structural and magnetic properties of NiZn ferrites. J. Mater. Sci.: Mater. Electron. 18, 1183–1189 (2007)Google Scholar
  6. 6.
    M. Mozaffari, J. Amighian, Preparation of Al-substituted Ni ferrite powders via mechanochemical processing. J. Magn. Magn. Mater. 260, 244–249 (2003)CrossRefGoogle Scholar
  7. 7.
    R.S. Biasi, H.F. Santos, Cation distribution, saturation magnetization and magnetocrystalline anisotropy of mixed ferrite NiAlxFe2–xO4 nanoparticles. Ceram. Int. 43, 4557–4561 (2017)CrossRefGoogle Scholar
  8. 8.
    A.A. Sattar, H.M. El-Sayed, K.M. El-Shokrofy, M.M. El-Tabey, Improvement of the magnetic properties of Mn-Ni-Zn Ferrite by the non magnetic Al-Ion substitution. J. Appl. Sci. 3, 162–168 (2005)Google Scholar
  9. 9.
    M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, R.K. Kotnala, Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant. J. Alloys Compd. 493, 553–560 (2010)CrossRefGoogle Scholar
  10. 10.
    L. Kumar, M. Kar, Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011)CrossRefGoogle Scholar
  11. 11.
    A.T. Raghavender, K.M. Jadhav, Dielectric properties of Al-substituted Co ferrite nanoparticles. Bull. Mater. Sci. 32, 575–578 (2009)CrossRefGoogle Scholar
  12. 12.
    B.K. Kuanr, S.R. Mishra, L. Wang, D. Conte, D. Neupane, V. Veerakumar, Z. Celinski, Frequency and field dependent dynamic properties of CoFe2−xAlxO4 ferrite nanoparticles. Mater. Res. Bull. 76, 22–27 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Hashim, S. Kumar, S. Ali, B.H. Koo, H. Chung, R. Kumar, Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles. J. Alloys Compd. 511, 107–114 (2012)CrossRefGoogle Scholar
  14. 14.
    A.A. Birajdar, S.E. Shirsath, R.H. Kadam, M.L. Mane, D.R. Mane, A.R. Shitre, Permeability and magnetic properties of Al3+ substituted Ni0.7Zn0.3Fe2O4 nanoparticles. J. Appl. Phys. 112, 053908 (2012)CrossRefGoogle Scholar
  15. 15.
    L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, L. He, R.D. Guo, Z.Y. Xu, Structural, magnetic and electrical properties in Al–substitued NiZnCo ferrite prepared via the sol–gel auto-combustion method for LTCC technology. RSC Adv. 7, 39198 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Hashim, S. Alimuddin, S.E. Kumar, R.K. Shirsath, J. Kotnalad, R. Shah, Kumar, Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite. Ceram. Int. 39, 1807–1819 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Han, C.R. Vestal, Z.J. Zhang, Quantum couplings and magnetic properties of CoCrxFe2−xO4 (0 < x < 1) spinel ferrite nanoparticles synthesized with reverse Micelle method. J. Phys. Chem. B 108, 583–587 (2004)CrossRefGoogle Scholar
  18. 18.
    W.A. Bayoumy, M.A. Gabal, Synthesis characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite. J. Alloys Compd. 506, 205–209 (2010)CrossRefGoogle Scholar
  19. 19.
    M.A. Gabal, Y.M.A. Angari, Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite. Mater. Chem. Phys. 118, 153–160 (2009)CrossRefGoogle Scholar
  20. 20.
    B.D. Cullity, Elements of X-ray Diffraction (Addison Wesley Publishing, Reading, 1959)Google Scholar
  21. 21.
    M.H. Mahmoud, C.M. Williams, J. Cai, I. Siu, J.C. Walker, Investigation of Mn-ferrite films produced by pulsed laser deposition. J. Magn. Magn. Mater. 261, 314–318 (2003)CrossRefGoogle Scholar
  22. 22.
    M.H. Ibrahim, M.S. Seehra, G. Srinivasan, Observations of magnetization reversal and magnetic clusters in copper ferrite films. J. Appl. Phys. 75, 6822–6824 (1994)CrossRefGoogle Scholar
  23. 23.
    S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE = Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)CrossRefGoogle Scholar
  24. 24.
    E.R. Kumar, R. Jayaprakash, S. Kumar, Effect of annealing temperature on structural and magnetic properties of manganese substituted NiFe2O4 nanoparticles. Mater. Sci. Semicond. Process. 17, 173–177 (2014)CrossRefGoogle Scholar
  25. 25.
    M.A. Gabal, A.M. Abdel-Daiem, Y.M. Angari, I.M. Ismail, Influence of Al-substitution on structural, electrical and magnetic properties of Mn–Zn ferrites nanopowders prepared via the sol–gel auto-combustion method. Polyhedron 57, 105–111 (2013)CrossRefGoogle Scholar
  26. 26.
    D.F. Wan, X.L. Ma, The Physics of Magnetism (UESTC Press, Chengdu, 1994)Google Scholar
  27. 27.
    N. Ponpandian, A. Narayanasamy, C.N. Chinnasamy, N. Sivakumar, J.M. Greneche, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, Néel temperature enhancement in nanostructured nickel zinc ferrite. Appl. Phys. Lett. 86, 192510 (2005)CrossRefGoogle Scholar
  28. 28.
    L. Peng, L.Z. Li, X.X. Zhong, Y. Hu, X.Q. Tu, R. Wang, Magnetic, electrical, and dielectric properties of La-Cu substituted Sr-hexaferrites for use in microwave LTCC devices. J. Alloys Compd. 665, 31–36 (2016)CrossRefGoogle Scholar
  29. 29.
    U.V. Chhaya, R.G. Kulkarni, Metal-insulator type transition in aluminum and chromium co-substituted nickel ferrites. Mater. Lett. 39, 91–96 (1999)CrossRefGoogle Scholar
  30. 30.
    E.J.W. Verwey, J.H. De Boer, Cation arrangement in a few oxides with crystal structures of the spinel type. Rec. Trav. Chim. Pays-Bas 55, 531–540 (1936)CrossRefGoogle Scholar
  31. 31.
    A. Lakshman, P.S.V.S. Rao, B.P. Rao, K.H. Rao, Electrical properties of In and Cr substituted magnesium-manganese ferrites. J. Phys. D 38, 673–678 (2005)CrossRefGoogle Scholar
  32. 32.
    A. Thakur, P. Mathur, M. Singh, Study of dielectric behavior of Mn-Zn nano ferrites. J. Phys. Chem. Solids 68, 378–381 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Le-Zhong Li
    • 1
  • Xiao-Xi Zhong
    • 1
  • Rui Wang
    • 1
  • Xiao-Qiang Tu
    • 1
  • Lei He
    • 1
  1. 1.Sichuan Province Key Laboratory of Information Materials and Devices Application, College of Optoelectronic TechnologyChengdu University of Information TechnologyChengduPeople’s Republic of China

Personalised recommendations