Effect of co-doped Tb3+ ions on electroluminescence of ZnO:Eu3+ LED

  • Miaoling Huang
  • Shenwei Wang
  • Guangmiao Wan
  • Xinwu Zhang
  • Yanwei Zhang
  • Kai Ou
  • Lixin Yi


Rare earth (RE) -doped ZnO electroluminescence is worthy of investigation for phosphor-free white light-emitting diodes (LEDs) due to their pure and sharp emissions. Whereas, the low solubility of RE ions in ZnO films is found to hinder the performance of RE-doped ZnO devices. Herein, ZnO:Eu and ZnO:Eu/Tb LEDs were synthesized and the electroluminescence properties were tested. The results show that the emission intensity of ZnO: Eu/Tb LED is 8 times higher than that of ZnO: Eu LED while the input power is smaller when the concentration of terbium is proper. Furthermore, we discussed the excitation mechanism and found that the ratio of the EL intensity of the 5D1 → 7F1 to 5D0 → 7FJ (J=0 − 4) transition increases with increasing Tb doping concentration, which may indicate the possibility of energy transfer from Tb3+ to Eu3+. The results are believed to be an effective strategy to improve the electroluminescence of RE-doped semiconductor for white LEDs.



This work was supported by the Key Laboratory of Luminescence and Optical Information of China in Beijing Jiaotong University with financial aid from the National Natural Science Foundation of China (Grant Nos. 60977017, 61275058), the Fundamental Research Funds for the Central Universities (2013JBM101), and Beijing Jiaotong University Foundation (S16PD00220).


  1. 1.
    C.C. Haomiao Zhu, W. Lin, Luo et al., Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun. 5, 4312–4322 (2014). Google Scholar
  2. 2.
    Y. Zhang, J. Xu, Q. Cui et al., Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms. Sci. Rep. 7, 42464 (2017). CrossRefGoogle Scholar
  3. 3.
    Y. Suxia, J. Zhang, X. Zhang et al., Enhanced red emission in CaMoO4:Bi3+,Eu3+. J. Phys. Chem. C. 111, 13256–13260 (2007). CrossRefGoogle Scholar
  4. 4.
    T.W. Chou, S. Mylswamy, R.S. Liu et al., Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes. Solid State Commun. 136, 205–209 (2005). CrossRefGoogle Scholar
  5. 5.
    W.J. Park, S.G. Yoon, D.H. Yoon, Photoluminescence properties of Y2O3 co-doped with Eu and Bi compounds as red-emitting phosphor for white. LED J. electroceram. 17, 41–44 (2006). CrossRefGoogle Scholar
  6. 6.
    S.-Y. Ying-Chien Fang, P.-C. Chu, Kao et al., Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+,Eu3+ red phosphors. J. Electrochem. Soc. 158, J1-J5 (2011). Google Scholar
  7. 7.
    V. Vinod Kumar, S. Kumar, M.M. Som, O.M. Duvenhage, H.C. Ntwaeaborwa, Swart, Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications. Appl. Surf. Sci. 308, 419–430 (2014). CrossRefGoogle Scholar
  8. 8.
    B.S. Barros, P.S. Melo, R.H.G.A. Kiminami et al., Photophysical properties of Eu3+ and Tb3+-doped ZnAl2O4 phosphors obtained by combustion reaction. J. Mater. Sci. 41, 4744–4748 (2006). CrossRefGoogle Scholar
  9. 9.
    D. Chen, Y. Yu, P. Huang et al., Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode. Acta Mater. 58, 3035–3041 (2010).
  10. 10.
    E.E.S. Teotonio, H.F. Brito, M. Cremona et al., Novel electroluminescent devices containing Eu3+-(2-acyl-1,3-indandionate) complexes with TPPO ligand. Opt. Mater. 32, 345–349 (2009). CrossRefGoogle Scholar
  11. 11.
    J. Yu, L. Zhou, H. Zhang et al., Efficient electroluminescence from new lanthanide (Eu3+, Sm3+) Complexes. Inorg. Chem. 44, 1611–1618 (2005).
  12. 12.
    Y. Yang, C. Li, C. Wang et al., Rare-earth doped ZnO Films: a material platform to realize multicolor and near-infrared electroluminescence. Adv. Opt. Mater. 2, 240–244 (2014).
  13. 13.
    S. Iwan, J.L. Zhao, S.T. Tan et al., Ion-dependent electroluminescence from trivalentrare-earth doped n-ZnO/p-Si heterostructured light-emitting diodes. Mat. Sci. Semicon. Proc. 30, 263–266 (2015).
  14. 14.
    S.A.M. Lima, M.R. Davolos, C. Legnani et al., Low voltage electroluminescence of terbium- and thulium-doped zinc oxide films. J. Alloy. Compd. 418, 35–38 (2006). CrossRefGoogle Scholar
  15. 15.
    J.-H. Lim, C.-K. Kang, K.-K. Kim et al., UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv. Mater. 18, 2720–2724 (2006).
  16. 16.
    X.M. Zhang, M.Y. Lu, Y. Zhang et al., Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767 (2009).
  17. 17.
    Y. Yunlong, Y. Wang, D. Chen et al., Enhanced emissions of Eu3+ by energy transfer from ZnO quantum dots embedded in SiO2 glass. Nanotechnology. 19, 055711–055715 (2008). CrossRefGoogle Scholar
  18. 18.
    G. D. Wang, M. Xing, et al., Defects-mediated energy transfer in red-light-emitting Eu-Doped ZnO nanowire arrays. J. Phys. Chem. C. 115, 22729–22735 (2011). CrossRefGoogle Scholar
  19. 19.
    R.P. Luciana, R. Kassab, M. de Davinson, da Silva et al., Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures. J. Appl. Phys. 105, 103505 (2009). CrossRefGoogle Scholar
  20. 20.
    J. Yuguang Lv, L. Zhang, Wang et al., J. Lumin. 128:117–122 (2007). Google Scholar
  21. 21.
    D.D. Wang, G.Z. Xing, J.H. Yang et al., Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers. J. Alloy. Compd. 504, 22–26 (2010). CrossRefGoogle Scholar
  22. 22.
    T. A. Nishikawa, N. Furukawa et al., Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection. Appl. Phys. Express. 2, 071004 (2009). CrossRefGoogle Scholar
  23. 23.
    T. Ghosh, Effect of substrate-induced strain on the morphological, electrical, optical and and photoconductive properties of RF magnetron sputtered ZnO thin films. Mater. Res. Bull. 46:1039–1044
  24. 24.
    P. Sundara, V. Purushothaman, S. Esakki et al., Role of point defects on the enhancement of room temperature ferromagnetism in ZnO nanorods. Cryst. Eng. Comm. 14, 4713–4718 (2012). CrossRefGoogle Scholar
  25. 25.
    S. Yerci, R. Li, L. Dal Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes. Appl. Phys. Lett. 97, 081109 (2010). CrossRefGoogle Scholar
  26. 26.
    J. Han, H. Paul Near-infrared-electroluminescent light-emitting planar optical sources based on gallium nitride doped with rare earths. Adv. Mater. 17, 91–96 (2005). CrossRefGoogle Scholar
  27. 27.
    Z.B. Fang, Y.S. Tan, H.X. Gong et al., Transparent conductive Tb-doped ZnO films prepared by rf reactive magnetron sputtering. Mater. Lett. 59, 2611–2614 (2005). CrossRefGoogle Scholar
  28. 28.
    F. He, J. Xu, et al., Composition dependence of dispersion and bandgap properties in PZN-xPT single crystals. J Appl. Phys. 110, 083513 (2011). CrossRefGoogle Scholar
  29. 29.
    H. Junying Zhang, W. Feng, T. Hao, Wang, Luminescent properties of ZnO sol and film doped with Tb3+ ion. Mater. Sci. Eng. A. 425, 346–348 (2006). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Miaoling Huang
    • 1
  • Shenwei Wang
    • 1
  • Guangmiao Wan
    • 1
  • Xinwu Zhang
    • 1
  • Yanwei Zhang
    • 1
  • Kai Ou
    • 1
  • Lixin Yi
    • 1
  1. 1.Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic TechnologyBeijing Jiaotong UniversityBeijingPeople’s Republic of China

Personalised recommendations