Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance

  • Xue Zhang
  • Wenfeng Zhu
  • Weidong Zhang
  • Shuirong Zheng
  • Shuhua Qi


To meet the demand of electromagnetic absorption, cheap and easily available microwave absorbents are urgently required. As an important functional material, carbon fibers (CFs) have been widely reported, however, too high conductivity easily leads to the impedance mismatch, which is not favorable to the microwave absorbing performance (MAP). To address this challenge, in this study, novel TiO2/Fe3O4/CF composites with tunable magnetic were synthesized by hydrothermal method and characterized by SEM, XRD, XPS and VSM. As absorbents, the minimum reflection loss (RL) value is − 41.52 dB at a thickness of 2.1 mm, and the corresponding bandwidth with effective attenuation (RL < − 10 dB) is up to 5.65 GHz (4.54–10.19 GHz). More importantly, the plausible mechanisms for the enhanced MAP are explored.


  1. 1.
    G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011)CrossRefGoogle Scholar
  2. 2.
    X. Ding, Y. Huang, S. Li, N. Zhang, J. Wang, FeNi3 nanoalloy decorated on 3D architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties. J. Alloy. Compd. 689, 208–217 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3(39), 10232–10241 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Wei, X. Wang, B. Zhang, M. Yu, Y. Zheng, Y. Wang, J. Liu, Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J. 314, 477–487 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Meng, W. Wei, X. Chen, X. Xu, M. Jiang, L. Jun, Y. Wang, Z. Zhou, Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phy. 18(4), 2510–2516 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Feng, G. Wu, C. Pan, Y. Wang, The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J. Nanosci. Nanotechnol. 17(6), 3786–3791 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Feng, G. Wu, Y. Wang, C. Pan, Synthesis, preparation and mechanical property of wood fiber-reinforced poly (vinyl chloride) composites. J. Nanosci. Nanotechnol. 17(6), 3859–3863 (2017)CrossRefGoogle Scholar
  9. 9.
    K. Lu, R. Jiang, X. Gao, H. Ma, Fe3O4/carbon nanotubes/polyaniline ternary composites with synergistic effects for high performance supercapacitors. RSC Adv. 4(94), 52393–52401 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Zhang, D. Huang, Y. Yang, F. Kang, J. Gu, Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater. Sci. Eng. B 178(1), 1–9 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Movassagh-Alanagh, A. Bordbar-Khiabani, A. Ahangari-Asl, Three-phase PANI@nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite. Compos. Sci. Technol. 150, 65–78 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Liu, J. Xu, R. Che, H. Chen, Z. Liu, F. Xia, Hierarchical magnetic yolk–shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. J. Mater. Chem. 22(18), 9277–9284 (2012)CrossRefGoogle Scholar
  13. 13.
    F. Fresno, R. Portela, S. Suárez, J.M. Coronado, Photocatalytic materials: recent achievements and near future trends. J. Mater. Chem. A 2(9), 2863–2884 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Funakoshi, T. Nonami, Electrochemical properties of hydroxyapatite crystal surfaces on anatase photocatalysts. J. Am. Ceram. Soc. 89(3), 944–948 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Shalan, M. Rashad, Y. Yu, M. Lira-Cantú, M. Abdel-Mottaleb, A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Appl. Phys. A 110(1), 111–122 (2013)CrossRefGoogle Scholar
  16. 16.
    G. Wu, H. Wu, K. Wang, C. Zheng, Y. Wang, A. Feng, Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC Adv. 6(63), 58069–58076 (2016)CrossRefGoogle Scholar
  17. 17.
    M.S.A.S. Shah, K. Zhang, A.R. Park, K.S. Kim, N.-G. Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous Ag–TiO2–reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5(11), 5093–5101 (2013)CrossRefGoogle Scholar
  18. 18.
    W. Yan, F. He, S. Gai, P. Gao, Y. Chen, P. Yang, A novel 3D structured reduced graphene oxide/TiO2 composite: synthesis and photocatalytic performance. J. Mater. Chem. A 2(10), 3605–3612 (2014)CrossRefGoogle Scholar
  19. 19.
    S.W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym. Adv. Technol. 20(6), 550–557 (2009)CrossRefGoogle Scholar
  20. 20.
    T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25(47), 6905–6910 (2013)CrossRefGoogle Scholar
  21. 21.
    M.S. Dorraji, M. Rasoulifard, A. Amani-Ghadim, M. Khodabandeloo, M. Felekari, M. Khoshrou, Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: optimization using response surface methodology. Appl. Surf. Sci. 383, 9–18 (2016)CrossRefGoogle Scholar
  22. 22.
    H.J. Song, S. You, X.H. Jia, J. Yang, MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram. Int. 41(10), 13896–13902 (2015)CrossRefGoogle Scholar
  23. 23.
    P. Si, S. Ding, J. Yuan, X.W. Lou, D.-H. Kim, Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5(9), 7617–7626 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Yang, H. Li, D. Xiong, Z. Cao, Hollow polyaniline/Fe3O4 microsphere composites: preparation, characterization, and applications in microwave absorption. React. Funct. Polym. 69(2), 137–144 (2009)CrossRefGoogle Scholar
  25. 25.
    B.S. Shirke, P.V. Korake, P.P. Hankare, S.R. Bamane, K.M. Garadkar, Synthesis and characterization of pure anatase TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 22(7), 821–824 (2011)CrossRefGoogle Scholar
  26. 26.
    T.C. Jagadale, S.P. Takale, R.S. Sonawane, H.M. Joshi, S.I. Patil, B.B. Kale, S.B. Ogale, N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J. Phys. Chem. C 112(37), 14595–14602 (2008)CrossRefGoogle Scholar
  27. 27.
    C.K. Lo, D. Xiao, M.M. Choi, Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J. Mater. Chem. 17(23), 2418–2427 (2007)CrossRefGoogle Scholar
  28. 28.
    D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang, L. Liu, X. Ren, H. Yang, Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J. Mater. Chem. A 2(36), 14940–14946 (2014)CrossRefGoogle Scholar
  30. 30.
    C. Liu, Y. Xu, L. Wu, Z. Jiang, B. Shen, Z. Wang, Fabrication of core–multishell MWCNT/Fe3O4/PANI/Au hybrid nanotubes with high-performance electromagnetic absorption. J. Mater. Chem. A 3(19), 10566–10572 (2015)CrossRefGoogle Scholar
  31. 31.
    H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7(18), 9776–9783 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Che, L.M. Peng, X.F. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004)CrossRefGoogle Scholar
  33. 33.
    P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4(26), 6362–6370 (2016)CrossRefGoogle Scholar
  34. 34.
    P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8(8), 5536–5546 (2016)CrossRefGoogle Scholar
  35. 35.
    G. Wang, Y. Chang, L. Wang, L. Liu, C. Liu, Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles. Mater. Res. Bull. 48(3), 1007–1012 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Zong, Y. Huang, Y. Zhao, X. Sun, C. Qu, D. Luo, J. Zheng, Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Adv. 3(45), 23638–23648 (2013)CrossRefGoogle Scholar
  37. 37.
    W. Zhang, L. Li, W. Zhu, H. Yan, S. Qi, Preparation and microwave absorbing performance of MoS2@Fe3O4@PANI composites. J. Mater. Sci. Mater. Electron. 28(20), 15488–15494 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xue Zhang
    • 1
  • Wenfeng Zhu
    • 1
  • Weidong Zhang
    • 1
  • Shuirong Zheng
    • 1
  • Shuhua Qi
    • 1
  1. 1.MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations