Annealing effect to constitutive behavior of Sn–3.0Ag–0.5Cu solder

  • Xu Long
  • Wenbin Tang
  • Shaobin Wang
  • Xu He
  • Yao Yao


Sn–Ag–Cu based solder alloys are replacing Sn–Pb solders in electronic packaging structures of commercial electric devices. In order to evaluate the structural reliability, the mechanical property of solder material is critical to the numerical simulations. Annealing process has been found to stabilize material properties of Sn–37Pb solder material. In the current study, the annealing effect on tensile behaviour of Sn–3.0Ag–0.5Cu (SAC305) solder material is investigated and compared with Sn–37Pb solder. It is found that the tensile strength for both materials are more stabilized and consistent after the annealing process, nevertheless, the annealing process will improve the plasticity of SAC305 solder dominated by dislocation motion, and impede the occurrence of hardening deformation in Sn–37Pb solder dominated by grain-boundary sliding mechanism. Furthermore, the annealing effect is quantified in the proposed constitutive model based on unified creep–plasticity theory. The parameters are calibrated against the measured stress–strain relationships at the tensile strain rates ranging from 1 × 10−4 to 1 × 10−3 s−1. The numerical regressions for dominant parameters in the proposed model reveal the intrinsic differences between SAC305 and Sn–37Pb solders under annealing treatment.



The authors are grateful for the supports provided by the National Natural Science Foundation of China (Nos. 51508464 and 11572249), the Natural Science Foundation of Shaanxi Province (No. 2017JM1013), the Fundamental Research Funds for the Central Universities (No. 3102016ZY017), and the Astronautics Supporting Technology Foundation of China (No. 2017-HT-XG).


  1. 1.
    M. Osterman, Being “RoHS Exempt” in a Pb-free world (University of Maryland, College Park, 2006)Google Scholar
  2. 2.
    I.C. Turner, B.D. Dunn, C. Barnes, Solder. Surf. Mt. Technol. 25, 218–228 (2013)CrossRefGoogle Scholar
  3. 3.
    B.D. Dunn, G. Mozdzen, Solder. Surf. Mt. Technol. 26, 139–146 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141–1158 (2009)CrossRefGoogle Scholar
  5. 5.
    X. Long, X. He, Y. Yao, J. Mater. Sci. 52, 6120–6137 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Wang, Y. Yao, X. Long, J. Mater. Sci.-Mater. Electron. 28, 17682–17692 (2017)CrossRefGoogle Scholar
  7. 7.
    J.W. Jang, A.P.D. Silva, J.K. Lin, D.R. Frear, J. Mater. Res. 19, 1826–1834 (2004)CrossRefGoogle Scholar
  8. 8.
    T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, J.K. Kivilahti, J. Mater. Res. 17, 291–301 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Wang, X. Long, Y. Yao, J. Mater. Sci.-Mater. Electron. 28, 14884–14892 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Long, S. Wang, X. He, Y. Yao, J. Mater. Res. 32, 3089–3099 (2017)CrossRefGoogle Scholar
  11. 11.
    Directive EU, European Parliament legislative resolution of 24 November 2010 on the proposal for a directive of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment (A7-0196/2010, 2010)Google Scholar
  12. 12.
    Y.C. Chan, D. Yang, Prog. Mater. Sci. 55, 428–475 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Yao, X. Long, L.M. Keer, Appl. Mech. Rev. 69, 040802 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Long, Y. Yao, Y. Wu, W. Xia, L. Ren, International Conference on Electronic Packaging Technology (ICEPT), Harbin 2017, pp. 63–68Google Scholar
  15. 15.
    F. Qin, T. An, N. Chen, J. Appl. Mech. 77, 1008 (2010)CrossRefGoogle Scholar
  16. 16.
    N. Bai, X. Chen, Int. J. Plasticity 25, 2181–2203 (2009)CrossRefGoogle Scholar
  17. 17.
    Annual Book of ASTM Standards, Standard test methods for tension testing of metallic materials (American Association State, West Conshohocken, 2009)Google Scholar
  18. 18.
    H. Ma, J. Mater. Sci. 44, 3841–3851 (2009)CrossRefGoogle Scholar
  19. 19.
    F. Ochoa, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1414–1420 (2003)CrossRefGoogle Scholar
  20. 20.
    N. Bai, X. Chen, H. Gao, Mater. Design. 30, 122–128 (2009)CrossRefGoogle Scholar
  21. 21.
    G. Xiao, G. Yuan, C. Jia, X. Yang, Z. Li, X. Shu, Mater. Sci. Eng. A 613, 336–339 (2014)CrossRefGoogle Scholar
  22. 22.
    X. Long, S. Wang, Y. Feng, Y. Yao, L.M. Keer, Mater. Sci. Eng. A 696, 90–95 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Long, Y. Feng, Y. Yao, Int. J. Appl. Mec. 9, 1750057 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Yao, L.M. Keer, M.E. Fine, Intermetallics 18, 1603–1611 (2010)CrossRefGoogle Scholar
  25. 25.
    X. Chen, G. Chen, Mater. Design. 28, 85–94 (2007)CrossRefGoogle Scholar
  26. 26.
    Y. Yao, X. He, L.M. Keer, M.E. Fine, Acta Mater. 83, 160–168 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Yao, L.M. Keer, Microelectron. Reliab. 53, 629–637 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Dunne, N. Petrinic, Introduction to computational plasticity. (Oxford University Press, Oxford, 2005)Google Scholar
  29. 29.
    S. Wen, L.M. Keer, H. Mavoori, J. Electron. Mater. 30, 1190–1196 (2001)CrossRefGoogle Scholar
  30. 30.
    Dassault Systemes Simulia Corp., ABAQUS User’s Manual 6.14-4 (Hibbitt, Karlsson & Sorensen, Rhode Island, 2014)Google Scholar
  31. 31.
    T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, Database for solder properties with emphasis on new lead-free solders, Colorado (2002)Google Scholar
  32. 32.
    P. Lall, D. Zhang, V. Yadav, D. Locker, Microelectron. Reliab. 62, 4–17 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Maleki, J. Cugnoni, J. Botsis, Mater. Sci. Eng. A 661, 132–144 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanics, Civil Engineering and ArchitectureNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations