Skip to main content
Log in

Rutile TiO2 films as electron transport layer in inverted organic solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) thin films were prepared by sol–gel spin coating method and deposited on ITO-coated glass substrates. The effects of different heat treatment annealing temperatures on the phase composition of TiO2 films and its effect on the optical band gap, morphological, structural as well as using these layers in P3HT:PCBM-based organic solar cell were examined. The results show the presence of rutile phases in the TiO2 films which were heat-treated for 2 h at different temperatures (200, 300, 400, 500 and 600 °C). The optical properties of the TiO2 films have altered by temperature with a slight decrease in the transmittance intensity in the visible region with increasing the temperature. The optical band gap values were found to be in the range of 3.28–3.59 eV for the forbidden direct electronic transition and 3.40–3.79 eV for the allowed direct transition. TiO2 layers were used as electron transport layer in inverted organic solar cells and resulted in a power conversion efficiency of 1.59% with short circuit current density of 6.64 mA cm−2 for TiO2 layer heat-treated at 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.L. Huang, C.T. Lee, H.Y. Lee, Performance improvement mechanisms of P3HT:PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers. Org. Electron. 21, 126–131 (2015)

    Article  CAS  Google Scholar 

  2. Z.X. Xu, V.A.L. Roy, K.H. Low, C.M. Che, Bulk heterojunction photovoltaic cells based on tetra-methyl substituted copper (II) phthalocyanine:P3HT:PCBM composite. Chem. Commun. 47, 9654–9656 (2011)

    Article  CAS  Google Scholar 

  3. J.C. Wang, W.T. Weng, M.Y. Tsai, M.K. Lee, S.F. Horng, T.P. Perng, C.C. Kei, C.C. Yu, H.F. Meng, Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. J. Mater. Chem. 20, 862–866 (2010)

    Article  CAS  Google Scholar 

  4. B. Kadem, W. Cranton, A. Hassan, Metal salt modified PEDOT: PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Org. Electron. 24, 73–79 (2015)

    Article  CAS  Google Scholar 

  5. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  6. A. Zaban, S.T. Aruna, S. Tirosh, B.A. Gregg, Y. Mastai, The effect of the preparation condition of TiO2 colloids on their surface structures. J. Phys. Chem. B 104, 4130–4133 (2000)

    Article  CAS  Google Scholar 

  7. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R.D. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)

    Article  CAS  Google Scholar 

  8. Z. Lin, C. Jiang, C. Zhu, J. Zhang, Development of inverted organic solar cells with TiO2 interface layer by using low-temperature atomic layer deposition. ACS Appl. Mater. Interfaces 5, 713–718 (2013)

    Article  CAS  Google Scholar 

  9. A. Hadipour, D. Cheyns, P. Heremans, B.P. Rand, Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells. Adv. Energy Mater. 1, 930–935 (2011)

    Article  CAS  Google Scholar 

  10. S.K. Hau, H.L. Yip, O. Acton, N.S. Baek, H. Ma, A.K.Y. Jen, Interfacial modification to improve inverted polymer solar cells. J. Mater. Chem. 18, 5113–5119 (2008)

    Article  CAS  Google Scholar 

  11. H.-C. Han, C.-A. Tseng, C.-Y. Du, A. Ganguly, C.-W. Chong, S.-B. Wang, C.-F. Lin, S.H. Chang, C.C. Su, J.H. Lee, K.H. Chen, L.C. Chen, Enhancing efficiency with fluorinated interlayers in small molecule organic solar cells. J. Mater. Chem. 22, 22899 (2012)

    Article  CAS  Google Scholar 

  12. R. Steim, F.R. Kogler, C.J. Brabec, Interface materials for organic solar cells. J. Mater. Chem. 20, 2499 (2010)

    Article  CAS  Google Scholar 

  13. J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2013)

    Article  Google Scholar 

  14. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215–218 (2006)

    Article  CAS  Google Scholar 

  15. D. Zhang, F. Xie, P. Lin, W.C. Choy, Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells. ACS Nano 7, 1740–1747 (2013)

    Article  CAS  Google Scholar 

  16. P.M. Sommeling, B.C. O’regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M. Van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B 110, 19191–19197 (2006)

    Article  CAS  Google Scholar 

  17. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013)

    Article  Google Scholar 

  18. J. Van de Lagemaat, A.J. Frank, Effect of the surface-state distribution on electron transport in dye-sensitized TiO2 solar cells: nonlinear electron-transport kinetics. J. Phys. Chem. B 104, 4292–4294 (2000)

    Article  Google Scholar 

  19. S.U. Ekar, G. Shekhar, Y.B. Khollam, P.N. Wani, S.R. Jadkar, M. Naushad, M.G. Chaskar, S.S. Jadhav, A. Fadel, V.V. Jadhav, J.H. Shendkar, Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. J. Solid State Electrochem. 21, 2713–2718 (2017)

    Article  CAS  Google Scholar 

  20. J. Hu, P. Liu, M. Chen, S. Li, Y. Yang, Synthesis and first-principle calculation of TiO2 rutile nanowire electrodes for dye-sensitized solar cells. Int. J. Electrochem. Sci. 12, 9725–9735 (2017)

    Article  CAS  Google Scholar 

  21. B.Y. Kadem, A.K. Hassan, W. Cranton, Enhancement of power conversion efficiency of P3HT:PCBM solar cell using solution processed Alq3 film as electron transport layer. J. Mater. Sci. 26, 3976–3983 (2015)

    CAS  Google Scholar 

  22. B. Kadem, A. Hassan, W. Cranton, Efficient P3HT: PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater. Sci. 27, 7038–7048 (2016)

    CAS  Google Scholar 

  23. G.T. Yue, J.H. Wu, Y.M. Xiao, H.F. Ye, J.M. Lin, M.L. Huang, Flexible dye-sensitized solar cell based on PCBM/P3HT hetrojunction. Chin. Sci. Bull. 56, 325–330 (2011)

    Article  CAS  Google Scholar 

  24. B. Kadem, A. Hassan, The effect of fullerene derivatives ratio on P3HT-based organic solar cells. Energy Proced. 74, 439–445 (2015)

    Article  CAS  Google Scholar 

  25. Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J. Phys. Chem. C. 111, 2709–2714 (2007)

    Article  CAS  Google Scholar 

  26. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Thermally evaporated CdTe thin films for solar cell applications: Optimization of physical properties. Mater. Res. Bull. 96, 188–195 (2017)

    Article  CAS  Google Scholar 

  27. J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)

    Article  CAS  Google Scholar 

  28. B.Y. Kadem, M.K. Al-hashimi, A.K. Hassan, The effect of solution processing on the power conversion efficiency of P3HT-based organic solar cells. Energy Proced. 50, 237–245 (2014)

    Article  CAS  Google Scholar 

  29. M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. 24, 195503 (2012)

    CAS  Google Scholar 

  30. K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J. Nat. Sci. 42, 357–361 (2008)

    Google Scholar 

  31. A. Kumar, A.R. Madaria, C. Zhou, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787–7792 (2010)

    Article  CAS  Google Scholar 

  32. L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Adv. 7(33), 20084–20092 (2017)

    Article  CAS  Google Scholar 

  33. J.D. Servaites, M.A. Ratner, T.J. Marks, Organic solar cells: a new look at traditional models. Energy Environ. Sci. 4, 4410–4422 (2011)

    Article  CAS  Google Scholar 

  34. S.M. Sze, Semiconductor Devices Physics and Technology, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  35. Y. Shen, K. Li, N. Majumdar, J.C. Campbell, M.C. Gupta, Bulk and contact resistance in P3HT: PCBM heterojunction solar cells. Solid Energy Mater. Sol. Cells 95, 2314–2317 (2011)

    Article  CAS  Google Scholar 

  36. B. Kadem, A. Hassan, M. Göksel, T. Basova, A. Şenocak, E. Demirbaş, M. Durmuş, High performance ternary solar cells based on P3HT:PCBM and ZnPc-hybrids. RSC Adv. 6, 93453–93462 (2016)

    Article  CAS  Google Scholar 

  37. A.K. Kapoor, S. Annapoorni, V. Kumar, Conduction mechanisms in poly (3-hexylthiophene) thin-film sandwiched structures. Semicond. Sci. Technol. 23, 035008 (2008)

    Article  Google Scholar 

  38. A. Hassan, B. Kadem, W. Cranton, Organic solar cells: study of combined effects of active layer nanostructure and electron and hole transport layers. Thin Solid Films 636, 760–764 (2017)

    Article  CAS  Google Scholar 

  39. J.E. McGinness, Mobility gaps: a mechanism for band gaps in melanins. Science 177, 896–897 (1972)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Y. Kadem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-hashimi, M.K., Kadem, B.Y. & Hassan, A.K. Rutile TiO2 films as electron transport layer in inverted organic solar cell. J Mater Sci: Mater Electron 29, 7152–7160 (2018). https://doi.org/10.1007/s10854-018-8703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8703-2

Navigation