Rutile TiO2 films as electron transport layer in inverted organic solar cell

  • Mohammed K. Al-hashimi
  • Burak Y. Kadem
  • Aseel K. Hassan


Titanium dioxide (TiO2) thin films were prepared by sol–gel spin coating method and deposited on ITO-coated glass substrates. The effects of different heat treatment annealing temperatures on the phase composition of TiO2 films and its effect on the optical band gap, morphological, structural as well as using these layers in P3HT:PCBM-based organic solar cell were examined. The results show the presence of rutile phases in the TiO2 films which were heat-treated for 2 h at different temperatures (200, 300, 400, 500 and 600 °C). The optical properties of the TiO2 films have altered by temperature with a slight decrease in the transmittance intensity in the visible region with increasing the temperature. The optical band gap values were found to be in the range of 3.28–3.59 eV for the forbidden direct electronic transition and 3.40–3.79 eV for the allowed direct transition. TiO2 layers were used as electron transport layer in inverted organic solar cells and resulted in a power conversion efficiency of 1.59% with short circuit current density of 6.64 mA cm−2 for TiO2 layer heat-treated at 600 °C.


  1. 1.
    H.L. Huang, C.T. Lee, H.Y. Lee, Performance improvement mechanisms of P3HT:PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers. Org. Electron. 21, 126–131 (2015)CrossRefGoogle Scholar
  2. 2.
    Z.X. Xu, V.A.L. Roy, K.H. Low, C.M. Che, Bulk heterojunction photovoltaic cells based on tetra-methyl substituted copper (II) phthalocyanine:P3HT:PCBM composite. Chem. Commun. 47, 9654–9656 (2011)CrossRefGoogle Scholar
  3. 3.
    J.C. Wang, W.T. Weng, M.Y. Tsai, M.K. Lee, S.F. Horng, T.P. Perng, C.C. Kei, C.C. Yu, H.F. Meng, Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. J. Mater. Chem. 20, 862–866 (2010)CrossRefGoogle Scholar
  4. 4.
    B. Kadem, W. Cranton, A. Hassan, Metal salt modified PEDOT: PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Org. Electron. 24, 73–79 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Zaban, S.T. Aruna, S. Tirosh, B.A. Gregg, Y. Mastai, The effect of the preparation condition of TiO2 colloids on their surface structures. J. Phys. Chem. B 104, 4130–4133 (2000)CrossRefGoogle Scholar
  7. 7.
    D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R.D. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)CrossRefGoogle Scholar
  8. 8.
    Z. Lin, C. Jiang, C. Zhu, J. Zhang, Development of inverted organic solar cells with TiO2 interface layer by using low-temperature atomic layer deposition. ACS Appl. Mater. Interfaces 5, 713–718 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Hadipour, D. Cheyns, P. Heremans, B.P. Rand, Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells. Adv. Energy Mater. 1, 930–935 (2011)CrossRefGoogle Scholar
  10. 10.
    S.K. Hau, H.L. Yip, O. Acton, N.S. Baek, H. Ma, A.K.Y. Jen, Interfacial modification to improve inverted polymer solar cells. J. Mater. Chem. 18, 5113–5119 (2008)CrossRefGoogle Scholar
  11. 11.
    H.-C. Han, C.-A. Tseng, C.-Y. Du, A. Ganguly, C.-W. Chong, S.-B. Wang, C.-F. Lin, S.H. Chang, C.C. Su, J.H. Lee, K.H. Chen, L.C. Chen, Enhancing efficiency with fluorinated interlayers in small molecule organic solar cells. J. Mater. Chem. 22, 22899 (2012)CrossRefGoogle Scholar
  12. 12.
    R. Steim, F.R. Kogler, C.J. Brabec, Interface materials for organic solar cells. J. Mater. Chem. 20, 2499 (2010)CrossRefGoogle Scholar
  13. 13.
    J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2013)CrossRefGoogle Scholar
  14. 14.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215–218 (2006)CrossRefGoogle Scholar
  15. 15.
    D. Zhang, F. Xie, P. Lin, W.C. Choy, Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells. ACS Nano 7, 1740–1747 (2013)CrossRefGoogle Scholar
  16. 16.
    P.M. Sommeling, B.C. O’regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M. Van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B 110, 19191–19197 (2006)CrossRefGoogle Scholar
  17. 17.
    Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Van de Lagemaat, A.J. Frank, Effect of the surface-state distribution on electron transport in dye-sensitized TiO2 solar cells: nonlinear electron-transport kinetics. J. Phys. Chem. B 104, 4292–4294 (2000)CrossRefGoogle Scholar
  19. 19.
    S.U. Ekar, G. Shekhar, Y.B. Khollam, P.N. Wani, S.R. Jadkar, M. Naushad, M.G. Chaskar, S.S. Jadhav, A. Fadel, V.V. Jadhav, J.H. Shendkar, Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. J. Solid State Electrochem. 21, 2713–2718 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Hu, P. Liu, M. Chen, S. Li, Y. Yang, Synthesis and first-principle calculation of TiO2 rutile nanowire electrodes for dye-sensitized solar cells. Int. J. Electrochem. Sci. 12, 9725–9735 (2017)CrossRefGoogle Scholar
  21. 21.
    B.Y. Kadem, A.K. Hassan, W. Cranton, Enhancement of power conversion efficiency of P3HT:PCBM solar cell using solution processed Alq3 film as electron transport layer. J. Mater. Sci. 26, 3976–3983 (2015)Google Scholar
  22. 22.
    B. Kadem, A. Hassan, W. Cranton, Efficient P3HT: PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater. Sci. 27, 7038–7048 (2016)Google Scholar
  23. 23.
    G.T. Yue, J.H. Wu, Y.M. Xiao, H.F. Ye, J.M. Lin, M.L. Huang, Flexible dye-sensitized solar cell based on PCBM/P3HT hetrojunction. Chin. Sci. Bull. 56, 325–330 (2011)CrossRefGoogle Scholar
  24. 24.
    B. Kadem, A. Hassan, The effect of fullerene derivatives ratio on P3HT-based organic solar cells. Energy Proced. 74, 439–445 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J. Phys. Chem. C. 111, 2709–2714 (2007)CrossRefGoogle Scholar
  26. 26.
    P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Thermally evaporated CdTe thin films for solar cell applications: Optimization of physical properties. Mater. Res. Bull. 96, 188–195 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)CrossRefGoogle Scholar
  28. 28.
    B.Y. Kadem, M.K. Al-hashimi, A.K. Hassan, The effect of solution processing on the power conversion efficiency of P3HT-based organic solar cells. Energy Proced. 50, 237–245 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. 24, 195503 (2012)Google Scholar
  30. 30.
    K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J. Nat. Sci. 42, 357–361 (2008)Google Scholar
  31. 31.
    A. Kumar, A.R. Madaria, C. Zhou, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787–7792 (2010)CrossRefGoogle Scholar
  32. 32.
    L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Adv. 7(33), 20084–20092 (2017)CrossRefGoogle Scholar
  33. 33.
    J.D. Servaites, M.A. Ratner, T.J. Marks, Organic solar cells: a new look at traditional models. Energy Environ. Sci. 4, 4410–4422 (2011)CrossRefGoogle Scholar
  34. 34.
    S.M. Sze, Semiconductor Devices Physics and Technology, 2nd edn. (Wiley, New York, 2001)Google Scholar
  35. 35.
    Y. Shen, K. Li, N. Majumdar, J.C. Campbell, M.C. Gupta, Bulk and contact resistance in P3HT: PCBM heterojunction solar cells. Solid Energy Mater. Sol. Cells 95, 2314–2317 (2011)CrossRefGoogle Scholar
  36. 36.
    B. Kadem, A. Hassan, M. Göksel, T. Basova, A. Şenocak, E. Demirbaş, M. Durmuş, High performance ternary solar cells based on P3HT:PCBM and ZnPc-hybrids. RSC Adv. 6, 93453–93462 (2016)CrossRefGoogle Scholar
  37. 37.
    A.K. Kapoor, S. Annapoorni, V. Kumar, Conduction mechanisms in poly (3-hexylthiophene) thin-film sandwiched structures. Semicond. Sci. Technol. 23, 035008 (2008)CrossRefGoogle Scholar
  38. 38.
    A. Hassan, B. Kadem, W. Cranton, Organic solar cells: study of combined effects of active layer nanostructure and electron and hole transport layers. Thin Solid Films 636, 760–764 (2017)CrossRefGoogle Scholar
  39. 39.
    J.E. McGinness, Mobility gaps: a mechanism for band gaps in melanins. Science 177, 896–897 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics DepartmentMissan UniversityAmarahIraq
  2. 2.Physics Department, College of ScienceUniversity of BabylonHillahIraq
  3. 3.Material and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK

Personalised recommendations