Advertisement

Structure, dielectric and ferroelectric properties of lead free (K,Na)(Nb)O3-xBiErO3 piezoelectric ceramics

  • Muhammad Qadeer Awan
  • Javed Ahmad
  • Lasse Norén
  • Teng Lu
  • Yun Liu
Article
  • 172 Downloads

Abstract

The effect of BiErO3 (BE) as a doping material on the structural, dielectric and ferroelectric properties of (KNa)NbO3 ceramics was explored in this research. Co-existence of two phase regions was confirmed in the composition range at x = 0.5% and x = 1.0%. The addition of BE content led to a decrease of the grain size and the ceramics became denser. Bulk P–E hysteresis loops were obtained with a maximum polarization of P max = 30.56 µC/cm2 and a remnant polarization of P r = 25.10 µC/cm2, along with a coercive field of E c  ~ 11.26 kV/cm. The results revealed that a field strain value of ~ 0.26 for x = 0.5% of BE substitution was attained. This presents outstanding piezoelectric and dielectric properties.

Notes

Acknowledgements

M. Q. Awan acknowledged the Higher Education Commission Pakistan for providing funding through “Indigenous 5000 fellowship program” and 6 month research visit to Research school of chemistry, ANU Australia under IRSIP scheme. Author also would like to pay special thanks to all respected members of RSC, ANU, Australia for offering research amenities for this project and giving 2 months further funding to complete that research work.

References

  1. 1.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), pp. 135–183Google Scholar
  2. 2.
    K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, 2000), pp. 74–84Google Scholar
  3. 3.
    B. Sahoo, V.A. Jaleel, P.K. Panda, Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators. Mater. Sci. Eng. B 126, 80–85 (2006)CrossRefGoogle Scholar
  4. 4.
    P. Muralt, Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)CrossRefGoogle Scholar
  5. 5.
    K. Kobayashi, Y. Doshida, Y. Mizuno, C.A. Randall, A route forwards to narrow the performance gap between PZT and lead-free piezoelectric ceramic with low oxygen partial pressure processed (Na0.5K0.5)NbO3. J. Am. Ceram. Soc. 95, 2928–2933 (2012)CrossRefGoogle Scholar
  6. 6.
    T. Takenaka, K. Maruyama, K. Sakata, Ferroelectric materials and their applications. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRefGoogle Scholar
  7. 7.
    H. Nagata, T. Takenaka, Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 21, 1299–1302 (2001)CrossRefGoogle Scholar
  8. 8.
    A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564–5567 (1999)CrossRefGoogle Scholar
  9. 9.
    G. Shirane, R. Newnham, R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3. Phys. Rev. 96, 581–588 (1954)CrossRefGoogle Scholar
  10. 10.
    L. Egerton, D.M. Dillon, Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRefGoogle Scholar
  11. 11.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Honma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  12. 12.
    T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111–124 (2007)CrossRefGoogle Scholar
  13. 13.
    H.D. Megaw, The seven phases of sodium niobate. Ferroelectrics 7, 87 (1974)CrossRefGoogle Scholar
  14. 14.
    M. Ahtee, A.M. Glazer, Lattice parameters and tilted octahedra in sodium-potassium niobate solid solutions. Acta Crystallogr. A. 32, 434 (1976)CrossRefGoogle Scholar
  15. 15.
    G. Shirane, R. Newniham, R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3. Phys. Rev. 96, 581 (1954)CrossRefGoogle Scholar
  16. 16.
    S.N. Murty, K.V.R. Murty, K. Umakantham, A. Bhanumathi, Modified (NaK)NbO3 ceramics for transducer applications. Ferroelectrics 102, 243–247 (1990)CrossRefGoogle Scholar
  17. 17.
    V.J. Tennery, High-temperature phase transitions in NaNbO3. J. Am. Ceram. Soc. 48, 537–539 (1965)CrossRefGoogle Scholar
  18. 18.
    V.J. Tennery, K.W. Hang, Thermal and X-ray diffraction studies of the NaNbO3-KNbO3 system. J. Appl. Phys. 39, 4749–4753 (1968)CrossRefGoogle Scholar
  19. 19.
    B.T. Mathias, J. Remeika, Dielectric properties of sodium and potassium niobates. Phys. Rev. 82, 727 (1951)CrossRefGoogle Scholar
  20. 20.
    F. Moura, Z. Simoes, L.S. Cavalcante, M. Zampieri, J.A. Varela, E. Longo, M.A. Zaghete, Strain and vacancy cluster behavior of vanadium and tungsten-doped Ba[Zr0.10Ti0.90]O3 ceramics. Appl. Phys. Lett. 92, 032905–032907 (2008)CrossRefGoogle Scholar
  21. 21.
    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. J. Appl. Phys. 40, 5999–6002 (2001)CrossRefGoogle Scholar
  22. 22.
    M.Q. Awan, J. Ahmad, Q. Sun, A. Berlie, W. Hu, Y. Liu, Structure, dielectric and ferroelectric properties of lead-free (Ba,Ca)(Ti,Zr)O3-xBiErO3 piezoelectric ceramics. Ceram. Int. 44, 1050–1055 (2018)Google Scholar
  23. 23.
    C. Lei, Z.G. Ye, Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3-AgNbO3 solid solution system. Appl. Phys. Lett. 93, 042901 (2008)CrossRefGoogle Scholar
  24. 24.
    K. Wang, J.F. Li, Analysis of crystallographic evolution in (Na, K) Nbo3based lead-free piezoceramics by X-ray diffraction. Appl. Phys. Lett. 91, 262902 (2007)CrossRefGoogle Scholar
  25. 25.
    R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL 3, 142–144 (2009)CrossRefGoogle Scholar
  26. 26.
    X. Wang, J. Wu, X. Cheng, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, Rhombohedral-tetragonal phase boundary and electrical properties of new K0.48Na0.52Nb0.98Sb0.02O3-Bi0.5Na0.5 ZrO3 lead free piezoceramics. J. Phys. D 46, 495305 (2013)CrossRefGoogle Scholar
  27. 27.
    B. Malic, J. Bernard, A. Bencan, M. Kosec, Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc. 28, 1191–1196 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Noh, J. Yoo, Dielectric and piezoelectric properties of (K0.5Na0.5)(Nb0.97Sb0.03)O3 ceramics doped with Bi2O3. J. Electoceram. 29, 144 (2012)CrossRefGoogle Scholar
  29. 29.
    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96 1–20 (2013)CrossRefGoogle Scholar
  30. 30.
    J.G. Wu, Y.Y. Yang, D.Q. Xiao, J.G. Zhu, P. Yu, L. Wu, W.J. Wu, Piezoelectric properties of LiSbO3-modified (K0.48Na0.52)NbO3 lead-free ceramics. Jpn. J. Appl. Phys. 46, 7375–7377 (2007)CrossRefGoogle Scholar
  31. 31.
    Y. Gao, J.L. Zhang, X.J. Zong, C.L. Wang, J.C. Li, Extremely temperature-stable piezoelectric properties of orthorhombic phase in (K,Na)NbO3-based ceramics. J. Appl. Phys. 107, 074101 (2010)CrossRefGoogle Scholar
  32. 32.
    L.M. Zheng, J.F. Wang, Q.Z. Wu, R. Zhang, C.M. Wang, Z.G. Gai, Piezoelectric properties and thermal stability of (Na0.53K0.47–xAgx)Nb1-xSbxO3 ceramics. Phys. Status Solidi A 208, 915–918 (2010)CrossRefGoogle Scholar
  33. 33.
    C.A. Randall, N. Kim, J. Kucera, W.W. Cao, T.R. Shorut, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677 (1998)CrossRefGoogle Scholar
  34. 34.
    J.J. Zhou, K. Wang, F. Li, J.F. Li, X.W. Zhang, Q.M. Wang, High and frequency-insensitive converse piezoelectric coefficient obtained in AgSbO3-Modified (Li, K, Na)(Nb,Ta)O3 lead-free piezoceramics. J. Am. Ceram. Soc. 96, 519–523 (2013)Google Scholar
  35. 35.
    Z. Yi, Y. Liu, M.A. Carpenter, J. Schiemer, R.L. Withers, K0.46Na0.54NbO3 ferroelectric ceramics: chemical synthesis, electro-mechanical characteristics, local crystal chemistry and elastic anomalies. Dalton Trans. 40, 5066–5072 (2011)CrossRefGoogle Scholar
  36. 36.
    D.W. Baker, P.A. Thomas, N. Zhang, A.M. Glazer, A comprehensive study of the phase diagram of KxNa1-xNbO3. Appl. Phys. Lett. 95, 091903 (2009)CrossRefGoogle Scholar
  37. 37.
    E.K. Akdogan, K. Kerman, M. Abazari, A. Safari, Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)–(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92, 112908 (2008)CrossRefGoogle Scholar
  38. 38.
    F. Li, D. Xiao, J. Wu, Z. Wang, C. Liu, J. Zhu, Phase structure and electrical properties of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)ZrO3 lead-free ceramics with a sintering aid of ZnO. Ceram. Int. 40, 14601–14605 (2014)CrossRefGoogle Scholar
  39. 39.
    X. Wang, J. Wu, X. Lv, H. Tao, X. Cheng, T. Zheng, B. Zhang, D. Xiao, J. Zhu, Phase structure, piezoelectric properties, and stability of new K0.48Na0.52NbO3–Bi0.5Ag0.5ZrO3 lead-free ceramics. J. Mater. Sci. 25, 3219–3225 (2014)Google Scholar
  40. 40.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005)CrossRefGoogle Scholar
  41. 41.
    Z. Wang, D. Xiao, J. Wu, M. Xiao, F. Li, J. Zhu, New Lead-Free 1-x(K0.5Na0.5)NbO3-x(Bi0.5 Na0.5)ZrO3 ceramics with high piezoelectricity. J. Am. Ceram. Soc. 97, 688–690 (2014)CrossRefGoogle Scholar
  42. 42.
    S. Jayanth, T.R.N. Kutty, Extended phase homogeneity and electrical properties of barium calcium titanate prepared by the wet chemical methods. Mater. Sci. Eng. B 110, 202 (2004)CrossRefGoogle Scholar
  43. 43.
    W.R. Buessem, L.E. Cross, A.K. Goswami, Phenomenological theory of high permittivity in fine-grained barium titanate. J. Am. Ceram. Soc. 49, 33 (1966)CrossRefGoogle Scholar
  44. 44.
    D. Hennings, A. Schnell, G. Simon, Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics. J. Am. Ceram. Soc. 65, 539 (1982)CrossRefGoogle Scholar
  45. 45.
    S.W. Zhang, H.L. Zhang, B.P. Zhang, G.L. Zhao, Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere. J. Eur. Ceram. Soc. 29, 3235–3242 (2009)CrossRefGoogle Scholar
  46. 46.
    E. Rigaard, T. Wurlitzer, Lead-free piezoceramics based on alkali niobates. J. Eur. Ceram. Soc. 25, 2701–2706 (2005)CrossRefGoogle Scholar
  47. 47.
    L. Wu, J.L. Zhang, P. Zheng, C.L. Wang, Influences of morphotropic phase boundaries on physical properties in (K,Na,Li)Nb0.80Ta0.20O3 ceramics. J. Phys. D 40, 3527–3530 (2007)CrossRefGoogle Scholar
  48. 48.
    Y. Saito, H. Takao, High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system. Ferroelectrics. 338, 17–22 (2006)CrossRefGoogle Scholar
  49. 49.
    S. Feng, D. Xiao, J. Wu, F. Li, M. Xiao, J. Zhu, Influence of K/Na ratio on phase structure and electrical properties of 0.96(KxNa1-x)NbO3-0.04(Bi0.5Na0.5)ZrO3 lead-free ceramics. J. Electroceram. 8, 9963 (2014)Google Scholar
  50. 50.
    W. Chaisan, R. Yimnirun, S. Ananta, Changes in ferroelectric properties of barium titanate ceramic with compressive stress. Phys. Scr. T129, 205 (2007)CrossRefGoogle Scholar
  51. 51.
    N. Lei, M.K. Zhu, P. Yang, L.F. Wang, Y.D. Hou, H. Yan, Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 109, 054102 (2011)CrossRefGoogle Scholar
  52. 52.
    K.H. Yoon, B.D. Lee, J. Park, J.H. Park, Dielectric and piezoelectric properties of (x)Pb(Mg1/3Nb2/3)O3–(1-x)Pb(Zr1/2Ti1/2)O3 thin films prepared by the sol–gel method. J. Appl. Phys. 90, 1968–1972 (2001)CrossRefGoogle Scholar
  53. 53.
    M.J. Hoffmann, M. Hammer, A. Endriss, D.C. Lupascu, Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Mater. 49, 1301 (2001)CrossRefGoogle Scholar
  54. 54.
    K. Yan, X.B. Ren, Multi-phase transition behavior and large electrostrain in lead-free (K, Na, Li)NbO3 ceramics. J. Phys. D 47, 015309 (2014)CrossRefGoogle Scholar
  55. 55.
    K. Wang, J.F. Li, J.J. Zhou, High normalized strain obtained in Li-modified (K,Na)NbO3 lead-free piezoceramics. Appl. Phys. Express 4, 061501 (2011)CrossRefGoogle Scholar
  56. 56.
    G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  57. 57.
    Y.L. Wang, L.T. Li, J.Q. Qi, Z.L. Gui, Ferroelectric characteristics of ytterbium-dopped barium zirconium titanate. Ceram. Int. 28, 657 (2002)CrossRefGoogle Scholar
  58. 58.
    A.K. Singh, T.C. Goel, R.G. Mendiraha, O.P. Thakur, C. Prakash, Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91, 6626 (2002)CrossRefGoogle Scholar
  59. 59.
    R.Z. Zuo, X.S. Fang, C. Ye, L.T. Li, Phase transitional behavior and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 ceramics. J. Am. Ceram. Soc. 90, 2424–2428 (2007)CrossRefGoogle Scholar
  60. 60.
    X. Li, L. Wu, D.Q. Xiao, J.G. Zhu, P. Yu, Y.H. Jiang, J.G. Wu, Microstructure and electrical properties of (1–x)(K0.5Na0.5)NbO3–xBiFeO3 piezoelectric ceramics. Phys. Status Solidi A 205, 1211–1214 (2008)CrossRefGoogle Scholar
  61. 61.
    R.C. Pohanka, P.L. Smith, Recent advances in piezoelectric ceramics, in Electronic Ceramics—Properties, Devices and Applications, ch 2, ed. by LM Levinson (Marcel Dekker, New York, 1987)Google Scholar
  62. 62.
    A.S. Karapuzha, N.K. James, H. Khanbareh, S. Zwaag, W.A. Groen, Structure, dielectric and piezoelectric properties of donor doped PZT ceramics across the phase diagram. Ferroelectrics 504, 160–171 (2016)CrossRefGoogle Scholar
  63. 63.
    Y.M. Chiang, G.W. Farrey, A.N. Soukhojak, Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family. Appl. Phys. Lett. 73, 3683 (1998)CrossRefGoogle Scholar
  64. 64.
    J.Y. Dai, X.W. Zhang, K.P. Chen, Morphotropic phase boundary and electrical properties of K1-xNaxNbO3K1-xNaxNbO3 lead-free ceramics. Appl. Phys. Lett. 94, 042905 (2009)CrossRefGoogle Scholar
  65. 65.
    L. Wu, J.L. Zhang, S.F. Shao, P. Zheng, C.L. Wang, Phase coexistence and high piezoelectric properties in (K0.40Na0.60)0.96Li0.04Nb0.80Ta0.20O3 ceramics. Appl. Phys. Lett. 41, 035402 (2008)Google Scholar
  66. 66.
    J.L. Zhang, X.J. Zong, L. Wu, Polymorphic phase transition and excellent piezoelectric performance of (K0.55Na0.45)0.965Li0.035(Nb0.80Ta0.20)O3 lead-free ceramics. Appl. Phys. Lett. 95, 022909 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SSS Laboratory, Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  2. 2.Research School of ChemistryThe Australian National UniversityCanberraAustralia
  3. 3.GävleSweden

Personalised recommendations