Advertisement

Dielectrical performance of high-k yttrium copper titanate thin films for electronic applications

  • Zoobia Ameer
  • Anna Grazia Monteduro
  • Silvia Rizzato
  • Anna Paola Caricato
  • Maurizio Martino
  • I. C. Lekshmi
  • Abhijit Hazarika
  • Debraj Choudhury
  • Elisabetta Mazzotta
  • Cosimino Malitesta
  • Vittorianna Tasco
  • D. D. Sarma
  • Giuseppe Maruccio
Article

Abstract

The increasing constraints in the miniaturization of modern electronic devices is driving the search for new high-k dielectric materials. Rare-earth transition metal oxides are very interesting because of the large values of dielectric constant observed in bulk samples. Here, we report on a comparison among the dielectric properties of yttrium copper titanate (YCTO) thin films and those of commonly used dielectrics such as SiO2 and MgO, grown in similar device structures. The YCTO permittivity was found to depend strongly on the oxygen pressure during deposition and can reach values even higher than those reported in bulk YCTO with good performances in terms of losses.

Notes

Acknowledgements

This work was financially supported by the Italian Ministry of Foreign Affairs and the Department of Science and Technology, Government of India through the high-relevance project “Spintronic devices for mass-scale electronics” within the program for scientific and technological co-operation between Italy and India. This work was also financially supported by the MIUR-PRIN Project (prot.2012EFSHK4) and Regione Puglia NABIDIT – NANOBIOTECNOLOGIE e SVILUPPO PER TERAPIE INNOVATIVE Project (F31D08000050007). Zoobia Ameer also wants to acknowledge HEC SRGP Project (No. 21–1004/SRGP/R&D/HEC/2016) for the partial financial support.

References

  1. 1.
    P. Lunkenheimer, T. Götzfried, R. Fichtl, S. Weber, T. Rudolf, A. Loidl, A. Reller, S.G. Ebbinghaus, Apparent giant dielectric constants, dielectric relaxation, and ac-conductivity of hexagonal perovskites La1.2Sr2.7BO7.33(B = Ru, Ir). J. Solid State Chem. 179, 3965–3973 (2006)CrossRefGoogle Scholar
  2. 2.
    Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. Federici, Design and performance of singular electric field terahertz photoconducting antennas. Appl. Phys. Lett. 71, 2076–2078 (1997)CrossRefGoogle Scholar
  3. 3.
    S. Kumar, G. Giovannetti, J. van den Brink, S. Picozzi, Theoretical prediction of multiferroicity in double perovskite Y2NiMnO6. Phys. Rev. B. 82, 134429 (2010)CrossRefGoogle Scholar
  4. 4.
    R. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54–62 (2001)CrossRefGoogle Scholar
  5. 5.
    J. Yu, T. Ishikawa, Y. Arai, S. Yoda, M. Itoh, Y. Saita, Extrinsic origin of giant permittivity in hexagonal BaTiO3 single crystals: contributions of interfacial layer and depletion layer. Appl. Phys. Lett. 87, 252904 (2005)CrossRefGoogle Scholar
  6. 6.
    P.K. Jana, S. Sarkar, B. Chaudhuri, H. Sakata, Effect of dc electric field on conductivity and giant permittivity of KxTiyNi1–x-yO. Appl. Phys. Lett. 90, 242913 (2007)CrossRefGoogle Scholar
  7. 7.
    D.A. Muller, T. Sorsch, S. Moccio, F. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)CrossRefGoogle Scholar
  8. 8.
    A.I. Kingon, J.-P. Maria, S.K. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032–1038 (2000)CrossRefGoogle Scholar
  9. 9.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
  10. 10.
    D. Choudhury, A. Venimadhav, C. Kakarla, K.T. Delaney, P.S. Devi, P. Mondal, R. Nirmala, J. Gopalakrishnan, N.A. Spaldin, U.V. Waghmare, D.D. Sarma, Unusual dielectric response in B-site size-disordered hexagonal transition metal oxides. Appl. Phys. Lett. 96, 162903 (2010)CrossRefGoogle Scholar
  11. 11.
    P. Thongbai, T. Yamwong, S. Maensiri, Correlation between giant dielectric response and electrical conductivity of CuO ceramic. Solid State Commun. 147, 385–387 (2008)CrossRefGoogle Scholar
  12. 12.
    K. Singh, N. Kumar, B. Singh, S.D. Kaushik, N.K. Gaur, S. Bhattacharya, S. Rayaprol, C. Simon, Magnetic and dielectric properties of R2CuTiO6 compounds (R = Y, La, Pr and Nd). J. Supercond. Novel Magn. 24, 1829–1838 (2011)CrossRefGoogle Scholar
  13. 13.
    Y.Q. Lin, X.M. Chen, X.M. Liu, Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics. Solid State Commun. 149, 784–787 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.Q. Lin, X.M. Chen, Dielectric relaxation and polaronic conduction in double perovskite La2MgMnO6. Appl. Phys. Lett. 96, 142902 (2010)CrossRefGoogle Scholar
  15. 15.
    H. Kim, P.C. McIntyre, K.C. Saraswat, Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 106–108 (2003)CrossRefGoogle Scholar
  16. 16.
    D. Choudhury, A. Hazarika, A. Venimadhav, C. Kakarla, K.T. Delaney, P. Sujatha Devi, P. Mondal, R. Nirmala, J. Gopalakrishnan, N.A. Spaldin, U.V. Waghmare, D.D. Sarma, Electric and magnetic polarizabilities of hexagonal Ln2CuTiO6 (Ln = Y, Dy, Ho, Er, and Yb). Phys. Rev. B 82, 134203 (2010)CrossRefGoogle Scholar
  17. 17.
    A.G. Monteduro, Z. Ameer, M. Martino, A.P. Caricato, V. Tasco, I.C. Lekshmi, R. Rinaldi, A. Hazarika, D. Choudhury, D.D. Sarma, G. Maruccio, Dielectric investigation of high-k yttrium copper titanate thin films. J. Mater. Chem. C. 4, 1080–1087 (2016)CrossRefGoogle Scholar
  18. 18.
    A.G. Monteduro, Z. Ameer, S. Rizzato, M. Martino, A.P. Caricato, V. Tasco, I.C. Lekshmi, A. Hazarika, D. Choudhury, D.D. Sarma, G. Maruccio, Investigation of high-k yttrium copper titanate thin films as alternative gate dielectrics. J. Phys. D. 49, 405303 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, Hoboken, 2007)Google Scholar
  20. 20.
    V. Verma, M. Katiyar, Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films. 527, 369–376 (2013)CrossRefGoogle Scholar
  21. 21.
    K.Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, K. Saito, Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys. 96, 3399–3403 (2004)CrossRefGoogle Scholar
  22. 22.
    L. Yan, C. Lopez, R. Shrestha, E. Irene, A. Suvorova, M. Saunders, Magnesium oxide as a candidate high-k gate dielectric. Appl. Phys. Lett. 88, 142901 (2006)CrossRefGoogle Scholar
  23. 23.
    A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D. 32, R57 (1999)CrossRefGoogle Scholar
  24. 24.
    W. Li, R.W. Schwartz, Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B. 75, 012104 (2007)CrossRefGoogle Scholar
  25. 25.
    J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A = Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys. 98(3), 093703 (2005)CrossRefGoogle Scholar
  26. 26.
    T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine-and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B. 73, 094124 (2006)CrossRefGoogle Scholar
  27. 27.
    M.A. Hernández, N. Masó, A.R. West, On the correct choice of equivalent circuit for fitting bulk impedance data of ionic/electronic conductors. Appl. Phys. Lett. 108, 152901 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zoobia Ameer
    • 1
    • 2
    • 3
  • Anna Grazia Monteduro
    • 1
    • 2
    • 4
  • Silvia Rizzato
    • 1
    • 2
  • Anna Paola Caricato
    • 1
    • 2
  • Maurizio Martino
    • 1
    • 2
  • I. C. Lekshmi
    • 5
  • Abhijit Hazarika
    • 6
  • Debraj Choudhury
    • 6
    • 7
  • Elisabetta Mazzotta
    • 8
  • Cosimino Malitesta
    • 8
  • Vittorianna Tasco
    • 2
  • D. D. Sarma
    • 6
  • Giuseppe Maruccio
    • 1
    • 2
  1. 1.Department of Mathematics and PhysicsUniversity of SalentoLecceItaly
  2. 2.CNR NANOTEC - Istituto di NanotecnologiaLecceItaly
  3. 3.Department of PhysicsShaheed Banazir Bhutto Women UniversityPeshawarPakistan
  4. 4.National Institute of Gastroenterology “S. De Bellis” Research HospitalCastellana GrotteItaly
  5. 5.Department of ChemistryCMR Institute of TechnologyBengaluruIndia
  6. 6.Solid State and Structural Chemistry UnitIndian Institute of ScienceBengaluruIndia
  7. 7.Department of PhysicsIndian Institute of Technology KharagpurKharagpurIndia
  8. 8.Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.)Università del SalentoLecceItaly

Personalised recommendations