Advertisement

Co2SiO4 nanostructures/nanocomposites: synthesis and investigations of optical, magnetic, photocatalytic, thermal stability and flame retardant properties

  • Shima Bayat
  • Azam Sobhani
  • Masoud Salavati-Niasari
Article
  • 69 Downloads

Abstract

Cobalt orthosilicate (Co2SiO4) nanostructures and nanocomposites were successfully synthesized via a sol–gel method, by controlling different conditions. The gels were prepared starting from cobalt (II) acetatete tetrahydrate (Co(CH3COO)2·4H2O), tetraethyl orthosilicate, NH3 and carbohydrate at calcination temperature 500–700 °C for 5 h. We choose 700 °C as optimum calcination temperature base on XRD results. SEM images showed that NH3 and glucose are optimum catalysis and capping agent, respectively, in our experimental conditions. For the first time, glucose, fructose, sucrose, maltose and lactose were applied as capping agents to green synthesis of cobalt orthosilicates. The optical and magnetic properties of Co2SiO4 nanostructures were investigated by UV–Vis and VSM, respectively. Also, for the first time photocatalytic behavior of these nanostructures was evaluated using UV–Vis and degradation of methyl orange, methylene blue, erythrosine and eosine. DSC and TG curves of the nanocomposites showed both thermal stability and flame retardant property for Co2SiO4 nanocomposites prepared in the presence of the PS and PSU.

Notes

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. 159271/855990.

References

  1. 1.
    A. Sazonov, M. Meven, V. Hutanu, G. Heger, T. Hansen, A. Gukasov, Acta Cryst. B 65, 664–675 (2009)CrossRefGoogle Scholar
  2. 2.
    X. Jiang, G.Y. Guo, Int. Symp. Adv. Magn. Technol. 282, 287–290 (2004)Google Scholar
  3. 3.
    Q. Tang, R. Dieckmann, J. Cryst. Growth 317, 119–127 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Cui, M. Zayat, D. Levy, J. Sol-Gel Sci. 40, 83–87 (2006)CrossRefGoogle Scholar
  5. 5.
    H. Taguchi, Y. Takeda, H. Shibahara, Mater. Lett. 52, 412–416 (2002)CrossRefGoogle Scholar
  6. 6.
    H.K. Lin, H.C. Chiu, H.C. Tsai, S.H. Chien, C.B. Wang, Catal. Lett. 88, 169–174 (2003)CrossRefGoogle Scholar
  7. 7.
    C. Cantalini, M. Post, D. Buso, M. Guglielmi, A. Martucci, Sens. Actuators B 108, 184–192 (2005)CrossRefGoogle Scholar
  8. 8.
    R. Bouarab, O. Akdim, A. Auroux, O. Cherifi, C. Mirodatos, Appl. Catal. A 264, 161–168 (2004)CrossRefGoogle Scholar
  9. 9.
    W.K. Jozwiak, E. Szubiakiewicz, J. Goralski, A. Klonkowski, T. Paryjczak, Kinet. Catal. 45, 247–255 (2004)CrossRefGoogle Scholar
  10. 10.
    E. Ruckenstein, H.Y. Wang, Appl. Catal. A 204 257–263 (2000)CrossRefGoogle Scholar
  11. 11.
    J.M. Jabłonski, J. Okal, D. Potoczna-Petru, L. Krajczyk, J. Catal. 220, 146–160 (2003)CrossRefGoogle Scholar
  12. 12.
    F. Djerboua, D. Benachour, R. Touroude, Appl. Catal. A 282, 123–133 (2005)CrossRefGoogle Scholar
  13. 13.
    M.L. Kantam, B.P.C. Rao, R.S. Reddy, N.S. Sekhar, B. Sreedhar, B.M. Choudary, J. Mol. Catal. A 272, 1–5 (2007)CrossRefGoogle Scholar
  14. 14.
    M.S. Ghattas, Microporous Mesoporous Mater. 97, 107–113 (2006)CrossRefGoogle Scholar
  15. 15.
    T. Mochizuki, T. Hara, N. Koizumi, M. Yamada, Appl. Catal. A 317, 97–104 (2007)CrossRefGoogle Scholar
  16. 16.
    T.K. Das, W.A. Conner, J. Li, G. Jacobs, M.E. Dry, B.H. Davis, Energy Fuels 19, 1430–1439 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Martinez, C. Lopez, F. Marquez, I. Diaz, J. Catal. 220, 486–499 (2003)CrossRefGoogle Scholar
  18. 18.
    O. Tamada, Mineral. J. 10, 71–83 (1980)CrossRefGoogle Scholar
  19. 19.
    R.A. Robie, B.S. Hemingway, H. Takei, Am. Mineral 67, 470–482 (1982)Google Scholar
  20. 20.
    A. M.Llusar, J.A. Fores, J. Badenes, M.A. Calbo, Tena, G. Monros. J. Eur. Ceram. Soc. 21, 1121–1130 (2001)CrossRefGoogle Scholar
  21. 21.
    A. Martucci, D. Busso, M. Guglielmi, L. Zbroniec, N. Koshizaki, M. Post, J. Sol-Gel Sci. Technol. 32, 243–246 (2004)CrossRefGoogle Scholar
  22. 22.
    M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Micro Nano Lett. 7, 831–834 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Micro Nano Lett. 7, 1300–1304 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 625, 26–33 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 617, 93–101 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Sobhani, M. Salavati-Niasari, Superlattices Microstruct. 65, 79–90 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Mahdiani, A. Sobhani, M. Salavati-Niasari, Sep. Purif. Technol. 185, 140–148 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Sobhani, M. Salavati-Niasari, J. Mol. Liq. 220, 334–338 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Sobhani, M. Salavati-Niasari, Mater. Res. Bull. 53, 7–14 (2014)CrossRefGoogle Scholar
  30. 30.
    N. Morimoto, M. Tokonami, M. Watanabe, K. Koto, Am. Mineral 59, 475–485 (1974)Google Scholar
  31. 31.
    J. Yatabe, T. Sugizaki, T. Ikawa, T. Kageyama, J. Ceram. Soc. Jpn. 105, 188–191 (1997)CrossRefGoogle Scholar
  32. 32.
    F. Ansari, A. Sobhani, M. Salavati-Niasari, J. Magn. Magn. Mater. 410, 27–33 (2014)CrossRefGoogle Scholar
  33. 33.
    F. Ansari, A. Sobhani, M. Salavati-Niasari, RSC Adv. 4, 63946–63950 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Guo, Ch. Wang, RSC Adv. 5, 70661–70667 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Stoia, M. Stefanescu, T. Dippong, O. Stefanescu, P. Barvinschi, J. Sol-Gel Sci. Technol. 54, 49–56 (2010)CrossRefGoogle Scholar
  36. 36.
    B.C. Dunn, P. Cole, D. Covington, M.C. Webster, R.J. Pugmire, R.D. Ernst, E.M. Eyring, N. Shah, G.P. Huffman, Appl. Catal. A. 278, 233–238 (2005)CrossRefGoogle Scholar
  37. 37.
    K. Okabe, X. Li, T. Matsuzaki, H. Arakawa, K. Fujimoto, J. Sol–Gel Sci. Technol. 19, 519–523 (2000)CrossRefGoogle Scholar
  38. 38.
    K. Okabe, X. Li, M. Wei, H. Arakawa, Catal. Today 89, 431–438 (2004)CrossRefGoogle Scholar
  39. 39.
    B. Ernst, S. Libs, P. Chaumette, A. Kiennemann, Appl. Catal. A 186, 145–168 (1999)CrossRefGoogle Scholar
  40. 40.
    M. Salavati-Niasari, A. Sobhani, Opt. Mater. 35, 904–909 (2013)CrossRefGoogle Scholar
  41. 41.
    J.R. Ota, P. Roy, S.K. Srivastava, R. Popovitz-Biro, R. Tenne, Nanotechnology 17, 1700–1705 (2006)CrossRefGoogle Scholar
  42. 42.
    C. Kulsi, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, D. Banerjee, Appl. Surf. Sci. 392, 540–548 (2017)CrossRefGoogle Scholar
  43. 43.
    Y. Jiang, M. Hao, L. Jiang, F. Liu, Y. Liu, RSC Adv. 6, 47840–47843 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Bayat, D. Ghanbari, M. Salavati-Niasari, J. Mol. Liq. 220, 223–231 (2016)CrossRefGoogle Scholar
  45. 45.
    S. Nomura, R. Santoro, J. Fang, R. Newnham, J. Phys. Chem. Solids 25, 901–905 (1964)CrossRefGoogle Scholar
  46. 46.
    J.M. Mays, Phys. Rev. 131, 38–53 (1963)CrossRefGoogle Scholar
  47. 47.
    W. Lottermoser, H. Fuess, Phys. Stat. Sol. 109, 589–595 (1988)CrossRefGoogle Scholar
  48. 48.
    S. Bayat, A. Sobhani, M. Salavati-Niasari, Mater. Res. Bull. 88, 248–257 (2017)CrossRefGoogle Scholar
  49. 49.
    P. Saravanapavan, L.L. Hench, J. Non-Cryst. Solids 318, 1–13 (2003)CrossRefGoogle Scholar
  50. 50.
    B. Pejova, A. Isahi, M. Najdoski, I. Grozdanov, Mater. Res. Bull. 36, 161–170 (2001)CrossRefGoogle Scholar
  51. 51.
    C. Lin, J. Solid State Chem. 157, 102–109 (2001)CrossRefGoogle Scholar
  52. 52.
    A. Sobhani, M. Salavati-Niasari, J. Nanostruct. 7, 141–146 (2017)Google Scholar
  53. 53.
    S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, J. Nanostruct. 6, 80–85 (2016)Google Scholar
  54. 54.
    W. Zhezhe, H. Shang, R. ZHao, X. Xing, Y. Wang, J. Nanostruct. 7, 103–110 (2017)Google Scholar
  55. 55.
    X. Liu, Y. Yang, Y. Han, L. Wang, G. Chen, X. Xiao, Y. Wang, J. Nanostruct. 7, 82–87 (2017)Google Scholar
  56. 56.
    A. Silva, S. Martinez-Gallegos, G. Rosano-Ortega, P. Schabes-Retchkiman, C. Vega-Lebrun, V. Albiter, J. Nanostruct. 7, 1–12 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Department of ChemistryKosar University of BojnordBojnordIslamic Republic of Iran

Personalised recommendations