Optimal conditions for fabricating CIGS nanoparticles by solvothermal method

  • E. Ghanbari
  • M. Zahedifar
  • O. Amiri


CIGS nanoparticles (NPs) were synthesized by solvothermal method. The effects of using argon and nitrogen as autoclave atmosphere and also metallic indium (Inmet) and InCl3 as indium precursors at different temperature profiles on crystalline phase of the fabricated CIGS NPs were investigated. Results show that producing single phase CIGS in N2 atmosphere is not possible. In Ar atmosphere, CuIn0.5Ga0.5Se2 pure phase was formed only by using InCl3 as indium precursor. In addition to CIGS, CuGaSe2 can also be observed, but CIS phase is not formed by using this approach. The particle size in the range of 20–45 nm was detected by XRD and SEM images. UV–visible absorption spectrum showed a broad peak in UV–visible range. Also reported is the unusual behavior of the produced NPs in different atmospheres.



The authors are grateful to research council of the University of Kashan for providing financial support (Grant Number of 682128) to undertake this work.


  1. 1.
    C.H. Lu, C.H. Lee, C.H. Wu, Sol. Energy Mater. Sol. Cells. 94, 1622 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Wang, S.K. Batabyal, H.M. Lim, Z. Li, Y.M. Lam, J. Alloys Compd. 618, 522 (2015)CrossRefGoogle Scholar
  3. 3.
    S.H. Mousavi, T.S. Muller, P.W. de Oliveira, J. Colloid Interface Sci. 382, 48 (2012)CrossRefGoogle Scholar
  4. 4.
    B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovolt. Res. Appl. 15, 659 (2015)CrossRefGoogle Scholar
  5. 5.
    J.H. Woo, H. Yoon, J.H. Cha, D.Y. Jung, S.S. Yoon, J. Aerosol Sci. 54, 1 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Lu, C. Yang, C. Lu, J. Mater. Sci. Mater. Electron. 27, 10642 (2016)Google Scholar
  7. 7.
    Y. Lin, X. Peng, L. Wang, Y. Lin, C. Wu, S. Liang, J. Mater. Sci. Mater. Electron. 25, 461 (2014)Google Scholar
  8. 8.
    M.E. Mohsen, B. Mostafa, J. Mater. Sci. Mater. Electron. (2015)Google Scholar
  9. 9.
    V.S. Saji, I.H. Choi, C.W. Lee, Sol. Energy. 85, 2666 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Jeong, D.P. Norton, J.D. Budai, G.E. Jellison, Thin Solid Films. 446, 18 (2004)CrossRefGoogle Scholar
  11. 11.
    W. Wang, Y.W. Su, C.H. Chang, Sol. Energy Mater. Sol. Cells. 95, 2616 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Ahn, K. Kim, K. Yoon, Curr. Appl. Phys. 8, 766 (2008)CrossRefGoogle Scholar
  13. 13.
    L. Fu, Y.Q. Guo, S. Zheng, Powder Diffr. 28, S28 (2013)CrossRefGoogle Scholar
  14. 14.
    W. Liu, D.B. Mitzi, M. Yuan, A.J. Kellock, S. Jay, O. Chey, Gunawan, Chem. Mater. 22, 1010 (2010)CrossRefGoogle Scholar
  15. 15.
    H. Lee, D. Jeong, T. Mun, B. Pejjai, V.R.M. Reddy, T.J. Anderson, C. Park, Korean J. Chem. Eng. 33, 2486 (2016)CrossRefGoogle Scholar
  16. 16.
    R.K. Wahi, Y. Liu, J.C. Falkner, V.L. Colvin, J. Colloid Interface Sci. 302, 530 (2006)CrossRefGoogle Scholar
  17. 17.
    S.I. Gu, S.H. Hong, H.S. Shin, Y.W. Hong, D.H. Yeo, J.H. Kim, S. Nahm, Ceram. Int. 38, S521 (2012)CrossRefGoogle Scholar
  18. 18.
    Y.G. Chun, K.H. Kim, K.H. Yoon, Thin Solid Films. 480–481, 46 (2005)CrossRefGoogle Scholar
  19. 19.
    S.H. Mousavi, T.S. Müller, R. Karos, P.W. De Oliveira, J. Alloys Compd. 659, 178 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Hyo-Soon, G. Sin-Il, H. Seung-hyouk, H. Youn-Woo, Y. Dong-Hun, N. Sahn, J. Korean Phys. Soc. 57, 1059 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Zahedifar, E. Ghanbari, M. Moradi, M. Saadat, Phys. Status Solidi Appl. Mater. Sci. 212, 657 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Huang, A.H. Yan, H. Zhao, Z. Li, X.P. Cai, Y.H. Wang, Y.C. Wu, S.Bin Yin, Y.H. Qiang, Cryst. Res. Technol. 49, 953 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Ben Marai, K. Djessas, Z. Ben, S. Ayadi, Alaya, J. Alloys Compd. 648, 1038 (2015)CrossRefGoogle Scholar
  24. 24.
    C.J. Hibberd, M. Ganchev, M. Kaelin, K. Ernits, A.N. Tiwari, in 2008 33rd IEEE Photovoltaic Specialists Conference (PVSC), p. 1 (2008)Google Scholar
  25. 25.
    F. Babbe, L. Choubrac, S. Siebentritt, F. Babbe, L. Choubrac, S. Siebentritt, 82105, 1142 (2016)Google Scholar
  26. 26.
    D. Abou-ras, S.S. Schmidt, N. Schäfer, J. Kavalakkatt, T. Rissom, T. Unold, R. Mainz, A. Weber, T. Kirchartz, E.S. Sanli, P.A. Van Aken, Q.M. Ramasse, H. Kleebe, D. Azulay, I. Balberg, O. Millo, O. Cojocaru-mirédin, D. Barragan-yani, K. Albe, J. Haarstrich, C. Ronning, Phys. Status Solidi Rapid Res. Lett. 375, 363 (2016)Google Scholar
  27. 27.
    R. Noufi, R.J. Matson, R.C. Powell, C. Herrington, Sol. Cells. 16, 479 (1986)CrossRefGoogle Scholar
  28. 28.
    H. Neumann, R.D. Tomlinson, Sol. Cells. 28, 301 (1990)CrossRefGoogle Scholar
  29. 29.
    G. Voorwinden, R. Kniese, M. Powalla, Thin Solid Films. 431–432, 538 (2003)CrossRefGoogle Scholar
  30. 30.
    Y.C. Lin, W.T. Yen, Y.L. Chen, L.Q. Wang, F.W. Jih, Phys. B Condens. Matter. 406, 824 (2011)CrossRefGoogle Scholar
  31. 31.
    T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T.P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, A.N. Tiwari, Prog. Photovoltaics Res. Appl. 25, 645 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Sandberg, B. Moshfegh, Build. Environ. 37, 211 (2002)CrossRefGoogle Scholar
  33. 33.
    T. Zdanowicz, T. Rodziewicz, M. Zabkowska-Waclawek, Sol. Energy Mater. Sol. Cells. 87, 757 (2005)CrossRefGoogle Scholar
  34. 34.
    B. Li, Y. Xie, J. Huang, Y. Qian, Adv. Mater. 11, 1456 (1999)CrossRefGoogle Scholar
  35. 35.
    N.D. Abazović, D.J. Jovanović, M.M. Stoiljković, M.N. Mitrić, S.P. Ahrenkiel, J.M. Nedeljković, M.I. Čomor, J. Serbian Chem. Soc. 77, 789 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Physics DepartmentUniversity of KashanKashanIran

Personalised recommendations