Advertisement

Optimization of Cu2ZnSnS4 thin film absorber layer growth without sulphurization using triethanolamine as complexing agent for thin film solar cells applications

  • J. J. Chaudhari
  • U. S. Joshi
Article

Abstract

Quaternary kesterite Cu2ZnSnS4 (CZTS) thin films have been prepared via a simple spin-coating technique based on a sol–gel precursor of 2-methoxyethanol solution with metal salts and thiourea. Solution processed CZTS thin film growth parameters using complexing agent triethanolamine (TEA) have been investigated. Effects of complexing agent TEA on structural, morphological, optical, electrical and photovoltaic properties of CZTS thin films were systematically investigated. X-ray diffraction and Raman spectroscopy studies reveal that amorphous nature of CZTS thin film changes into polycrystalline with kesterite crystal structure with optimized TEA concentartion. Surface morphology of CZTS films were analyzed by field emission scanning electron microscope and atomic force microscope, which revealed the smooth, uniform, homogeneous and densely packed grains and systematic grain growth formation with varying TEA concentrations. UV–Vis spectra revealed a direct energy band gap ranging from 1.78 to 1.50 eV, which was found to depend upon the TEA concentration. X-ray photoelectron spectroscopy demonstrated stoichiometric atomic ratios of multicationic quaternary CZTS thin film grown without sulphurization. p-type conductivity was confirmed using Hall measurements and the effect of varying concentartion of TEA on electrical and photovoltaic properties are studied. The SLG/FTO/ZnO/CZTS/Al thin film solar cell is fabricated with the CZTS absorber layer grown at optimized TAE concentration of 0.06 M. It shows a power conversion efficiency of 0.87% for a 0.16 cm2 area with Voc = 0.257 mV, Jsc = 8.95 mA/cm2 and FF = 38%.

Notes

Acknowledgements

Authors are thankful to Dr. F. Singh, IUAC, New Delhi, India, for providing the Raman spectroscopy measurements.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest.

References

  1. 1.
    M. Powalla, P. Jackson, D. Hariskos, W. Witte, R. Wurz, E. Lotter, R. Menner, W. Wischman, In Proceedings of the 29th European Photovoltaic Solar Energy Conference 3AO 4.2, Amsterdam, 2014Google Scholar
  2. 2.
    R.B.V. Chalapathy, G.S. Jung, B.T. Ahn, Sol. Energy Mater. Sol. Cells 95, 3216–3221 (2011)CrossRefGoogle Scholar
  3. 3.
    A.V. Moholkar, S.S. Shinde, A.R. Babar, K.U. Sim, H.K. Lee, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloys Compd. 509, 7439–7446 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, Appl. Phys. Express 1, 041201–041202 (2008)CrossRefGoogle Scholar
  5. 5.
    B.A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, Prog. Photovolt. Res. Appl. 19, 93–96 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Jiang, Y. Li, R. Dhakal, P. Thapaliya, M. Mastro, J.D. Caldwell, F. Kub, X. Yan, J. Photon. Energy 01950, 1–6 (2011)Google Scholar
  7. 7.
    K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583–587 (2009)CrossRefGoogle Scholar
  8. 8.
    O.V. Galan, M. Courel, M.E. Rodriguez, D.J. Olarte, M.A. Frutis, E. Saucedo, Sol. Energy Mater. Sol. Cells 132, 557–562 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Park, H. Young, Hwang, J. Sol-Gel Sci. Technol. 65, 23–27 (2013)CrossRefGoogle Scholar
  10. 10.
    T.K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22, E156–E159 (2010)CrossRefGoogle Scholar
  11. 11.
    W. Ki, H.W. Hillhouse, Adv. Energy Mater. 1, 732–735 (2011)CrossRefGoogle Scholar
  12. 12.
    M.O. Loapez, A.M. Acevedo, Thin Solid Films 330, 96–101 (1998)CrossRefGoogle Scholar
  13. 13.
    T.K. Chaudhuri, D. Tiwari, Sol. Energy Mater. Sol. Cells 101, 46–50 (2012)CrossRefGoogle Scholar
  14. 14.
    B.D. Cullity, Elements of X-Ray Diffraction, vol. 2 (Addison–Wesley Publishing Company, Inc., Boston, 1956), pp. 99–256Google Scholar
  15. 15.
    A. Kassim, H.S. Min, T.W. Tee, N.C. Fei, Am. J. Appl. Sci. 8, 359–361 (2011)CrossRefGoogle Scholar
  16. 16.
    P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Thin Solid Films 517, 2519–2523 (2009)CrossRefGoogle Scholar
  17. 17.
    X. Fontane, L.C. Barrio, V.I. Roca, E. Saucedo, A.P. Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt, Appl. Phys. Lett. 98, 181905 (2011)CrossRefGoogle Scholar
  18. 18.
    T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, RSC Adv. 5, 77565–77571 (2015)CrossRefGoogle Scholar
  19. 19.
    P.R. Ghediya, T.K. Chaudhuri, D. Vankhade, J. Alloys Compd. 685, 498–506 (2016)CrossRefGoogle Scholar
  20. 20.
    D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of Instrumental Analysis, 6th edn. (Thomson Books Publisher, Belmont, 2007), pp. 481–491Google Scholar
  21. 21.
    P.R. Ghediya, T.K. Chaudhuri, J. Phys. D 48, 455109 (2015). pp)CrossRefGoogle Scholar
  22. 22.
    A.J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vac. Sci. Technol. A 29, 051203–051211 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Himmrich, H. Haeuseler, Spectrochim. Acta Mol. Biomol. Spectrosc. 47, 933–942 (1991)CrossRefGoogle Scholar
  24. 24.
    D. Dumcenco, Y.S. Huang, Opt. Mater. 35, 419–425 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Tao, J. Liu, J. He, K. Zhang, J. Jiang, L. Sun, P. Yang, J. Chu, RSC Adv. 4, 23977–23984 (2014)CrossRefGoogle Scholar
  26. 26.
    P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Phys. Status Solidi C 7, 901–904 (2010)Google Scholar
  27. 27.
    P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, J. Phys. D 43, 215403–215413 (2010)CrossRefGoogle Scholar
  28. 28.
    J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Phys. Rev. B 69, 014301 (2004)CrossRefGoogle Scholar
  29. 29.
    C.G. Munce, G.K. Parker, S.A. Holt, G.A. Hope, Colloids Surf. A 295, 152–158 (2007)CrossRefGoogle Scholar
  30. 30.
    S.P. Louise, P.P. Ivan, M.E.H. Amanda, C.J.H. Robin, Chem. Mater. 11, 1792–1799 (1999)CrossRefGoogle Scholar
  31. 31.
    Z. Seboui, A. Gassoumi, Y. Cuminal, N.K. Turki, Superlattices Microstruct. 75, 586–592 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (North-Holland Publishers, Amsterdam, 1972), pp. 277–279Google Scholar
  33. 33.
    J. Wang, P. Zhang, X. Song, L. Gao, RSC Adv. 4, 21318–21324 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Oztas, Chin. Phys. Lett. 25(11), 4090 (2008)CrossRefGoogle Scholar
  35. 35.
    C.S. Kanurul, G.L. Shekar, L. Krishnamurthy, R.G.K. Urs, J. Nano- Electron. Phys. 6(2), 02004 (2014)Google Scholar
  36. 36.
    S.Y. Lee, B.O. Park, Thin Solid Films 516, 3862–3864 (2008)CrossRefGoogle Scholar
  37. 37.
    Z. Li, J.C.W. Ho, K.K. Lee, X. Zeng, T. Zhang, L.H. Wong, Y.M. Lam, RSC Adv. 4, 26888–26894 (2014)CrossRefGoogle Scholar
  38. 38.
    G.L. Agawane, S.W. Shin, S.A. Vanalakar, M.P. Suryawanshi, A.V. Moholkar, J.H. Yun, J. Gwak, J.H. Kim, J. Mater. Sci.: Mater. Electron. 26, 1900–1907 (2015)Google Scholar
  39. 39.
    J. Wang, P. Zhang, X. Song, L. Gao, RSC Adv. 5, 1220–1226 (2015)CrossRefGoogle Scholar
  40. 40.
    Q.G. Zhang, X. Zhang, B.Y. Cao, Appl. Phys. Lett. 89, 114102 (2006)CrossRefGoogle Scholar
  41. 41.
    K. Barmak, A. Darbal, K.J. Ganesh, P.J. Ferreira, J.M. Rickman, T. Sun, B. Yao, A.P. Warren, K.R. Coffey, J. Vac. Sci. Technol. A 32, 061503 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Patel, I. Mukhopadhyay, A. Ray, J. Phys. D 45, 445103 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, School of SciencesGujarat UniversityAhmedabadIndia

Personalised recommendations