Sodium vanadate nanoflowers/rGO composite as a high-rate cathode material for sodium-ion batteries

  • Amr Rady Radwan
  • Yueli Liu
  • Vantu Nguyen
  • Wen Chen


Herein, Na5V12O32 has a low conductivity, which restricts its electrochemical performance. In order to use Na5V12O32 in practical sodium-ion batteries (SIBs), nanoflowers were prepared hydrothermally to enhance the electronic conductivity with the increasing of the effective surface area. Each nanoflower has 2D nanosheets with the thickness of ca. 10 nm and length up to 150 nm. Na5V12O32 nanoflowers were then embedded with reduced graphene oxide (rGO) by solid-state reaction process, which gives rise to fast electron transfer. The cathodic behaviour of 5–15 wt% rGO composites with Na5V12O32 nanoflowers is investigated. As a cathode material for SIBs, Na5V12O32 nanoflowers/rGO–10 wt% composite has a redox potential ca. 2.9 V versus Na+/Na and exhibits an excellent reversible cycling with initial discharge capacity of 142 mAh g−1 at a rate of 5C. In addition, Na5V12O32 nanoflowers/rGO–10 wt% composite has a tap density of 3 g cm−3 and volumetric energy density 1242 Wh L−1. These preliminary results indicate that the Na5V12O32 nanoflowers/rGO–10 wt% composite is a promising cathode candidate for SIBs.



This work was supported by the National Nature Science Foundation of China (Nos. 11674258, 51572205), International Science & Technology Cooperation Program of China (No. 2013DFR50710), the Fundamental Research Funds for the Central Universities (No. 2017II22GX), and China Scholarship Council (No. 2013GXZ980). Thanks for the measurements supporting from Center for Materials Research and Analysis at Wuhan University of Technology (WUT).

Supplementary material

10854_2018_8690_MOESM1_ESM.docx (528 kb)
Supplementary material 1 (DOCX 528 KB)


  1. 1.
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Nithya, S. Gopukumar, WIREs Energy Environ. 4, 253 (2015)CrossRefGoogle Scholar
  3. 3.
    B.L. Ellis, L.F. Nazar, Curr. Opin. Solid State Mater. Sci. 16, 168 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Zhou, S. Liu, H. Wang, G. Yan, J. Power Sources 227, 111 (2013)CrossRefGoogle Scholar
  5. 5.
    D. Hamani, M. Ati, J.M. Tarascon, P. Rozier, Electrochem. Commun. 13, 938 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Wang, W. Wang, Y. Ren, K. Huang, S. Liu, J. Power Sources 199, 263 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Cao, D. Fang, C. Wang, L. Li, W. Xu, Z. Luo, X. Liu, C. Xiong, S. Liu, RSC Adv. 5, 42955 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Dong, S. Li, K. Zhao, C. Han, W. Chen, B. Wang, L. Wang, B. Xu, Q. Wei, L. Zhang, X. Xu, L. Mai, Energy Environ. Sci. 8, 1267 (2015)CrossRefGoogle Scholar
  9. 9.
    H. He, G. Jin, H. Wang, X. Huang, Z. Chen, D. Sun, Y. Tang, J. Mater. Chem. A 2, 3563 (2014)CrossRefGoogle Scholar
  10. 10.
    G. He, L. Li, A. Manthiram, J. Mater. Chem. A 3, 14750 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Wu, D.P. Wang, X. Rui, B. Liu, K. Zhou, A.W. Law, Q. Yan, J. Wei, Z. Chen, Adv. Mater. 27, 3038 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, Angew. Chem. Int. Ed. 126, 13008 (2014)CrossRefGoogle Scholar
  13. 13.
    S.W. Kim, D.H. Seo, H. Gwon, J. Kim, K. Kang, Adv. Mater. 22, 5260 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Radwan, Y.L. Liu, Y.Y. Qi, W. Jin, V. Nguyen, X. Yang, S. Yang, W. Chen, Mater. Res. Bull. 97, 24 (2018)CrossRefGoogle Scholar
  15. 15.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Song, Z. Yu, M.L. Gordin, S. Hu, R. Yi, D. Tang, T. Walter, M. Regula, D. Choi, X. Li, A. Manivannan, D. Wang, Nano Lett. 14, 6329 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Zhou, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Chem. Commun. 48, 2198 (2012)CrossRefGoogle Scholar
  18. 18.
    X. Xin, X. Zhou, F. Wang, X. Yao, X. Xu, Y. Zhu, Z. Liu, J. Mater. Chem. 22, 7724 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, J. Phys. Chem. Lett. 3, 1824 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.H. Jung, C.H. Lim, D.K. Kim, J. Mater. Chem. A 1, 11350 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Duan, H. Wang, J. Hou, Y. Zhang, V. Chen, Mater. Lett. 161, 601 (2015)CrossRefGoogle Scholar
  22. 22.
    V.H. Pham, H.D. Pham, T.T. Dang, S.H. Hur, E.J. Kim, B.S. Kong, S. Kim, J.S. Chung, J. Mater. Chem. 22, 10530 (2012)CrossRefGoogle Scholar
  23. 23.
    G. Yang, W. Hou, Z. Sun, Q. Yan, J. Mater. Chem. 15, 1369 (2005)CrossRefGoogle Scholar
  24. 24.
    W. Chen, L. Yan, P.R. Bangal, Carbon 48, 1146 (2010)CrossRefGoogle Scholar
  25. 25.
    Y.-S. He, D.-W. Bai, X. Yang, J. Chen, X.-Z. Liao, Z.-F. Ma, Electrochem. Commun. 12, 570 (2010)CrossRefGoogle Scholar
  26. 26.
    X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, Carbon 49, 133 (2011)CrossRefGoogle Scholar
  27. 27.
    L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Energy Environ. Sci. 5, 6966 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amr Rady Radwan
    • 1
  • Yueli Liu
    • 1
  • Vantu Nguyen
    • 1
  • Wen Chen
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations