Skip to main content
Log in

Latest advancement of fully additive process for 8 µm ultra-fine pitch chip-on-film (COF) by nano-size Ni–P metallization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents the first demonstration of a precision formation of conductor patterns as fine as 8 µm pitch for flex-based electronics assemblies. We have developed a novel fully additive process (FAP) by combining an ultra-thin chemical surface modification on polyimide (PI) to achieve a uniform Ni–P metallization and subsequent high-speed electrolytic pattern copper plating. On top of the modified interface, an ultra-thin anchoring layer (< 5 nm) constituting amide and carboxyl bonding is able to compensate the hydrophilic nature of the modification layer to obtain reliable adhesion even after being subjected to 300 °C heat treatment, as verified by XPS and TEM analysis at 1000kX. This exceptional property eliminates the trade-off concern by achieving both high-speed signal transmission and enhanced interfacial bond strength on a smooth surface (Ra < 60 nm). Experimental results revealed that the bending endurance and trace deformation characteristic of the fine pitch circuit by this FAP is comparable to conventional COF substrates and is also able to produce high-quality diffusion bonds with the formation of nano-twin structure on the Au–Au bonding interface. Insulation resistance measurements showed no metal residues and no current leakage between 16, 20, and 25 µm pitch COF after temperature humidity bias. On the basis of these results, FAP by direct Ni–P metallization proposed in this work provides unique opportunities for ultra-fine pitch and high electrical performance interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. L.S. Kyoung, C. Kyosung, J.K. Sung, S.K. Jong, W.P. Kyung, J. Microelectron. Reliab. 52(6), 1182–1188 (2012)

    Article  Google Scholar 

  2. W.P. Dow, G.L. Liao, S.E. Huang, S.W. Chen, J. Mater. Chem. 20, 3600–3609 (2010)

    Article  Google Scholar 

  3. S.W. Suh, J.J. Kim, S.H. Kim, B.K. Park, J. Ind. Eng. Chem. 18, 290–294 (2012)

    Article  Google Scholar 

  4. S. Yang, D. Wu, S. Qi, G. Cui, R. Jin, Z. Wu, J. Phys. Chem. B 113, 9694–9701 (2009)

    Article  Google Scholar 

  5. F.Y. Shen, S.E. Huang, W.-P. Dow, ECS Electrochem. Lett. 2, D45–D48 (2013)

    Article  Google Scholar 

  6. M. Kohtoku, Y. Nakamaru, H. Honma, O. Takai, J. Jpn. Inst. Electron. Packag. 18(7), 495–502 (2015)

    Article  Google Scholar 

  7. P.Y. Wu, C.H. Lin, C.M. Chen, Metals 7(189) (2017). https://doi.org/10.3390/met7060189

  8. S.C. Park, K.J. Min, K.H. Lee, Metals Mater. Int. 17(1), 111–115 (2011)

    Article  Google Scholar 

  9. H. Jiang, B. Chou, S. Beilin, Proceedings, 1998 International Conference on Multichip Modules and High Density Packaging (Cat. No. 98EX154), Denver, CO, 1998, pp. 7–1 (1998). https://doi.org/10.1109/ICMCM.1998.670747

  10. International Technology Roadmap for Semiconductors 2.0, Heterogeneous Integration, 2015 edn., Chap. 4, p. 15

  11. P. Malinowski et al., Small pitch, high resolution-scaling of OLED displays. IMEC. https://lirias.kuleuven.be/bitstream/123456789/566161/1/Pawel+Malinowski+(imec,+Belgium).pdf

  12. E. Liew et al., IPC APEX EXPO (2014)

  13. S.J. Normyle, T.F. Mccarthy, D.L. Wynants, The impact of conductor surface profile (Rrms) on total circuit attenuation in microstrip and stripline transmission lines. Taconic Advance Dielectric Divisions, Petersburg

  14. S.C. Kim, Y.H. Kim, J. Mater. Sci.: Mater. Electron. 27, 3658 (2016). https://doi.org/10.1007/s10854-015-4205-7

    Google Scholar 

  15. B.I. Noh, J.W. Yoon, B.Y. Lee et al., J. Mater. Sci.: Mater. Electron. 20, 885 (2009). https://doi.org/10.1007/s10854-008-9811-1

    Google Scholar 

  16. S.C. Park, K.J. Min, K.H. Lee, Y.S. Jeong, Y.B. Park, J. Electron. Mater. 38, 2455–2460 (2009)

    Article  Google Scholar 

  17. S.Y. Chang, C.W. Lin, H.H. Hsu, J. Electrochem. Soc. 151(1), C81–C88 (2004)

    Article  Google Scholar 

  18. M. Kohtoku, Y. Nakamaru, H. Honma, O. Takai, J. Jpn. Inst. Electron. Packag. 19(2), 132–140 (2016)

    Article  Google Scholar 

  19. W.D. Callister, D.G. Rethwisch, Mater. Sci. Eng. 14.14

  20. A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen, Appl. Phys. Lett. 78, 2673 (2001)

    Article  Google Scholar 

  21. Y. Xiang, T.Y. Tsui, J.J. Vlassak, J. Mater. Res. 21(6), 1607–1618 (2006)

    Article  Google Scholar 

  22. A.F.H. Iii, J.W. Reynolds, P.A. Lafrance, Designcon, (2010)

  23. E.O. Hammerstad, Ø Jensen, Accurate models for microstrip computer aided design. IEEE MTT-S Int. Microwave Symposium Dig., pp. 407–409 (1980)

  24. Y. Shlepnev, C. Nwachukwu, Proceedings of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, 518–523 (2011)

  25. Y. Shlepnev, C. Nwachukwu, in DesignCon 2012: Where Chipheads Connect, vol. 4, pp. 2931–2955 (2012)

  26. C. Halford, Advanced Layout Solutions Ltd. (2009)

  27. H. Akahoshi, M. Kawamoto, T. Itabashi, O. Miura, A. Takahashi, S. Kobayashi, M. Miyazaki, T. Mutoh, M. Wajima, T. Ishimaru, IEEE transactions on components, packaging, and manufacturing technology: part A 18(1) (1995) (https://doi.org/10.1109/95.370746)

  28. K.P.L. Pun, N.S. Dhaka, C. Chee-wah, A.H.S. Chan, Effect of ENEPIG metallization for solid-state gold-gold diffusion bonds. Microelectron. Reliab. 78, 339–348 (2017)

    Article  Google Scholar 

  29. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304(5669) (2004) 422–426

    Article  Google Scholar 

  30. L. Lu, X. Chen, X. Huang, K. Lu, Science 323(5914), 607–610 (2009)

    Article  Google Scholar 

  31. X. Zhao, C. Lu, A.K. Tieu, L. Pei, L. Zhang, K. Cheng, M. Huang, Mater. Sci. Eng. A 676, 474–486 (2016)

    Article  Google Scholar 

  32. S.C. Tan, Y.C. Chan, S.M. Lui, J. Electron. Mater. 34, 1143–1149 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by Compass Technology Company, Ltd. The authors would also like to express gratitude to JCU Corporation R&D Center for supporting the ELFSEED process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin P. L. Pun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pun, K.P.L., Ali, L., Kohtoku, M. et al. Latest advancement of fully additive process for 8 µm ultra-fine pitch chip-on-film (COF) by nano-size Ni–P metallization. J Mater Sci: Mater Electron 29, 6937–6949 (2018). https://doi.org/10.1007/s10854-018-8680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8680-5

Navigation