Abstract
This paper presents the first demonstration of a precision formation of conductor patterns as fine as 8 µm pitch for flex-based electronics assemblies. We have developed a novel fully additive process (FAP) by combining an ultra-thin chemical surface modification on polyimide (PI) to achieve a uniform Ni–P metallization and subsequent high-speed electrolytic pattern copper plating. On top of the modified interface, an ultra-thin anchoring layer (< 5 nm) constituting amide and carboxyl bonding is able to compensate the hydrophilic nature of the modification layer to obtain reliable adhesion even after being subjected to 300 °C heat treatment, as verified by XPS and TEM analysis at 1000kX. This exceptional property eliminates the trade-off concern by achieving both high-speed signal transmission and enhanced interfacial bond strength on a smooth surface (Ra < 60 nm). Experimental results revealed that the bending endurance and trace deformation characteristic of the fine pitch circuit by this FAP is comparable to conventional COF substrates and is also able to produce high-quality diffusion bonds with the formation of nano-twin structure on the Au–Au bonding interface. Insulation resistance measurements showed no metal residues and no current leakage between 16, 20, and 25 µm pitch COF after temperature humidity bias. On the basis of these results, FAP by direct Ni–P metallization proposed in this work provides unique opportunities for ultra-fine pitch and high electrical performance interconnects.
Similar content being viewed by others
References
L.S. Kyoung, C. Kyosung, J.K. Sung, S.K. Jong, W.P. Kyung, J. Microelectron. Reliab. 52(6), 1182–1188 (2012)
W.P. Dow, G.L. Liao, S.E. Huang, S.W. Chen, J. Mater. Chem. 20, 3600–3609 (2010)
S.W. Suh, J.J. Kim, S.H. Kim, B.K. Park, J. Ind. Eng. Chem. 18, 290–294 (2012)
S. Yang, D. Wu, S. Qi, G. Cui, R. Jin, Z. Wu, J. Phys. Chem. B 113, 9694–9701 (2009)
F.Y. Shen, S.E. Huang, W.-P. Dow, ECS Electrochem. Lett. 2, D45–D48 (2013)
M. Kohtoku, Y. Nakamaru, H. Honma, O. Takai, J. Jpn. Inst. Electron. Packag. 18(7), 495–502 (2015)
P.Y. Wu, C.H. Lin, C.M. Chen, Metals 7(189) (2017). https://doi.org/10.3390/met7060189
S.C. Park, K.J. Min, K.H. Lee, Metals Mater. Int. 17(1), 111–115 (2011)
H. Jiang, B. Chou, S. Beilin, Proceedings, 1998 International Conference on Multichip Modules and High Density Packaging (Cat. No. 98EX154), Denver, CO, 1998, pp. 7–1 (1998). https://doi.org/10.1109/ICMCM.1998.670747
International Technology Roadmap for Semiconductors 2.0, Heterogeneous Integration, 2015 edn., Chap. 4, p. 15
P. Malinowski et al., Small pitch, high resolution-scaling of OLED displays. IMEC. https://lirias.kuleuven.be/bitstream/123456789/566161/1/Pawel+Malinowski+(imec,+Belgium).pdf
E. Liew et al., IPC APEX EXPO (2014)
S.J. Normyle, T.F. Mccarthy, D.L. Wynants, The impact of conductor surface profile (Rrms) on total circuit attenuation in microstrip and stripline transmission lines. Taconic Advance Dielectric Divisions, Petersburg
S.C. Kim, Y.H. Kim, J. Mater. Sci.: Mater. Electron. 27, 3658 (2016). https://doi.org/10.1007/s10854-015-4205-7
B.I. Noh, J.W. Yoon, B.Y. Lee et al., J. Mater. Sci.: Mater. Electron. 20, 885 (2009). https://doi.org/10.1007/s10854-008-9811-1
S.C. Park, K.J. Min, K.H. Lee, Y.S. Jeong, Y.B. Park, J. Electron. Mater. 38, 2455–2460 (2009)
S.Y. Chang, C.W. Lin, H.H. Hsu, J. Electrochem. Soc. 151(1), C81–C88 (2004)
M. Kohtoku, Y. Nakamaru, H. Honma, O. Takai, J. Jpn. Inst. Electron. Packag. 19(2), 132–140 (2016)
W.D. Callister, D.G. Rethwisch, Mater. Sci. Eng. 14.14
A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen, Appl. Phys. Lett. 78, 2673 (2001)
Y. Xiang, T.Y. Tsui, J.J. Vlassak, J. Mater. Res. 21(6), 1607–1618 (2006)
A.F.H. Iii, J.W. Reynolds, P.A. Lafrance, Designcon, (2010)
E.O. Hammerstad, Ø Jensen, Accurate models for microstrip computer aided design. IEEE MTT-S Int. Microwave Symposium Dig., pp. 407–409 (1980)
Y. Shlepnev, C. Nwachukwu, Proceedings of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, 518–523 (2011)
Y. Shlepnev, C. Nwachukwu, in DesignCon 2012: Where Chipheads Connect, vol. 4, pp. 2931–2955 (2012)
C. Halford, Advanced Layout Solutions Ltd. (2009)
H. Akahoshi, M. Kawamoto, T. Itabashi, O. Miura, A. Takahashi, S. Kobayashi, M. Miyazaki, T. Mutoh, M. Wajima, T. Ishimaru, IEEE transactions on components, packaging, and manufacturing technology: part A 18(1) (1995) (https://doi.org/10.1109/95.370746)
K.P.L. Pun, N.S. Dhaka, C. Chee-wah, A.H.S. Chan, Effect of ENEPIG metallization for solid-state gold-gold diffusion bonds. Microelectron. Reliab. 78, 339–348 (2017)
L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304(5669) (2004) 422–426
L. Lu, X. Chen, X. Huang, K. Lu, Science 323(5914), 607–610 (2009)
X. Zhao, C. Lu, A.K. Tieu, L. Pei, L. Zhang, K. Cheng, M. Huang, Mater. Sci. Eng. A 676, 474–486 (2016)
S.C. Tan, Y.C. Chan, S.M. Lui, J. Electron. Mater. 34, 1143–1149 (2005)
Acknowledgements
The authors would like to acknowledge the support provided by Compass Technology Company, Ltd. The authors would also like to express gratitude to JCU Corporation R&D Center for supporting the ELFSEED process.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pun, K.P.L., Ali, L., Kohtoku, M. et al. Latest advancement of fully additive process for 8 µm ultra-fine pitch chip-on-film (COF) by nano-size Ni–P metallization. J Mater Sci: Mater Electron 29, 6937–6949 (2018). https://doi.org/10.1007/s10854-018-8680-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-018-8680-5