Skip to main content
Log in

Growth and electrical properties of epitaxial 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 thin film by pulsed laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(100)-oriented epitaxial relaxor ferroelectric 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-0.3PT) thin film was prepared on SrRuO3-buffered SrTiO3 single-crystal substrate by pulsed laser deposition. The phase and domain structure, ferroelectric and piezoelectric properties, and leakage current behavior were studied. Results indicated well saturated polarization-versus-electric field hysteresis loops with large remnant polarization of 30 µC/cm2 and coercive field of 11 kV/mm was obtained. The analysis on the leakage current behavior proposed that linear ohmic conduction and Fowler–Nordheim tunneling were the dominant mechanism for the electric field amplitude below and above 15 kV/mm, respectively. Furthermore, the epitaxial PMN-0.3PT thin film exhibited excellent local piezoelectric response and in situ electric-field-induced domain switching behavior. These results suggest the potential applications of the present epitaxial PMN-0.3PT film in integrated ferroelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Kutnjak, J. Petzelt, R. Blinc, Nature. 441, 956–959 (2006)

    Article  Google Scholar 

  2. S.J. Zhang, F. Li, J. Appl. Phys. 111, 031301 (2012)

    Article  Google Scholar 

  3. M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, C. Trigona, Sensor Actuat. A-Phys. 162, 425–431 (2010)

    Article  Google Scholar 

  4. T. Kobayashi, R. Maeda. T. Itoh, R. Sawada, Appl. Phys. Lett. 90, 183514 (2007)

    Article  Google Scholar 

  5. H.X. Fu, R.E. Cohen, Nature. 403, 281–283 (2000)

    Article  Google Scholar 

  6. P.X. Miao, Y.G. Zhao, N.N. Luo, D.Y. Zhao, A. Chen, Z. Sun, M.Q. Guo, M.H. Zhu, H.Y. Zhang, Q. Li, Sci. Rep. 6, 19965 (2016)

    Article  Google Scholar 

  7. S.H. Baek, J. Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick, C. B. Eom, Science. 334, 958–961 (2011)

    Article  Google Scholar 

  8. Y.Y. Zhao, X.L. Li, G.D. Hu, J.B. Xu, J. Alloys Compd. 577, 606–609 (2013)

    Article  Google Scholar 

  9. Q.R. Yao, F.F. Wang, C.M. Leung, Y.X. Tang, T. Wang, C.C. Jin, W.Z. Shi, J. Alloys Compd. 588, 290–293 (2014)

    Article  Google Scholar 

  10. X.L. Zhu, E. Defaÿ, G.L. Rhun, M. Aïd, Y.H. Xu, Q. Zhang, Y.J. Xiao, H.B. Gao, D.Y. Liang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, J. Appl. Phys. 112, 054105 (2012)

    Article  Google Scholar 

  11. M. Detalle, D. Rémiens, G. Wang, P. Roussel, B. Dkhil, Appl. Phys. Lett. 91, 032903 (2007)

    Article  Google Scholar 

  12. Y.W. Li, Z.G. Hu, F.Y. Yue, G.Y. Yang, W.Z. Shi, X.J. Meng, J.L. Sun, J.H. Chu, Appl. Phys. Lett. 91, 232912 (2007)

    Article  Google Scholar 

  13. W. Gong, J.-F. Li, X.C. Chu, L.T. Li, J. Am. Ceram. Soc. 87, 1031–1034 (2004)

    Article  Google Scholar 

  14. S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17, 1245–1250 (1982)

    Article  Google Scholar 

  15. K.Y. Chan, W.S. Tsang, C.L. Mak, K.H. Wong, P.M. Hui, Phys. Rev. B. 69, 144111 (2004)

    Article  Google Scholar 

  16. J. Jiang, H.-J. Jung, S.–G. Yoon, J. Alloy Compd. 509, 6924–6929 (2011)

    Article  Google Scholar 

  17. B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z.G. Ye, Phys. Rev. B. 66, 054104 (2002)

    Article  Google Scholar 

  18. J. Wang, K.H. Wong, H.L.W. Chan, C.L. Choy, Appl. Phys. A. 79, 551–556 (2004)

    Article  Google Scholar 

  19. M. Abazari, A. Safari, Appl. Phys. Lett. 97, 262902 (2010)

    Article  Google Scholar 

  20. G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  21. Y.T. Lin, P. Xu, X.Y. Zhao, C.J. He, Y.J. Wang, D. Zhou, C. Chen, L.H. Liu, H.Q. Xu, D. Lin, L.S. Luo, Opt. Mater. 31, 1151–1154 (2009)

    Article  Google Scholar 

  22. M. Detalle, A. Ferri, A. Da Costa, R. Desfeux, C. Soyer, D. Rémiens, Thin Solid Films. 518, 4670–4674 (2010)

    Article  Google Scholar 

  23. J. Luo, W. Sun, Z. Zhou, Y. Bai, Z.J. Wang, G. Tian, D.Y. Chen, X.S. Gao, F.Y. Zhu, J.-F. Li, ACS Appl. Mater. Interfaces 9, 13315–13322 (2017)

    Article  Google Scholar 

  24. D. Liu, C.Y. Tian, C.G. Ma, L.L. Luo, Y.X. Tang, T. Wang, W.Z. Shi, D.Z. Sun, F.F. Wang, Scr. Mater. 123, 64–68 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of China (Grant Nos. 61404085, 11574214, 51772192, and 11604211), the Opening Project of Key Laboratory of Transparent Opto-functional Inorganic Materials, Chinese Academy of Sciences (No. KLTOIM201602), the Science and Technology Commission of Shanghai Municipality (No. 17070502700), and Shanghai Normal University Program (Grant No. SK201601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihua Duan, Feifei Wang or Dazhi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, S., Tang, Y., Zhao, X. et al. Growth and electrical properties of epitaxial 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 thin film by pulsed laser deposition. J Mater Sci: Mater Electron 29, 6779–6784 (2018). https://doi.org/10.1007/s10854-018-8664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8664-5

Navigation