Effect of trifluoroacetic acid treatment of PEDOT:PSS layers on the performance and stability of organic solar cells


The photoelectric characteristics of poly(3,4-ethylenedioxythio phene):poly(styrene sulfonate) (PEDOT:PSS) treated with the different concentrations of trifluoroacetic acid (TFA) is in-depth investigated. The results show treatment of PEDOT:PSS layers by TFA manipulates the molecular structure of PEDOT:PSS chains, enhances the conductivity and work function of PEDOT:PSS. More interestingly, polymer solar cells with PEDOT:PSS treated by TFA as anode interfacial layers (AILs) exhibit the longer stability of the devices and the higher power conversion efficiency (PCE) of the devices. The best PCE of the devices based on poly(3-hexyltthiophene) and [6,6]-phenyl-C60-butyric acid methyl ester gets to 4.10 ± 0.21%, increasing by as large as 35.8% compared to that of the devices with pristine PEDOT:PSS as AIL. The enhanced PEDOT:PSS conductivity improves the short circuit current density (J SC ) and fill factor of the devices. The devices with PEDOT:PSS treated by TFA as AILs remain ~ 25% of their initial efficiency after 63 days storage. On the other hand, the pristine PEDOT:PSS devices remain only ~ 1%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    A. Rao, P.C.Y. Chow, S. Gelinas, C.W. Schlenker, C.Z. Li, H.L. Yip, A.K.Y. Jen, D.S. Ginger, R.H. Friend, Nature. 500, 435–439 (2013)

    Article  Google Scholar 

  2. 2.

    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics. 6, 591–595 (2012)

    Article  Google Scholar 

  3. 3.

    H.Z. Yu, X.X. Huang, Y.P. Li, Z.P. Wu, J. Mater. Sci.-Mater. El. 28, 12909–12915 (2017)

    Article  Google Scholar 

  4. 4.

    H. Kim, K.G. Lim, T.W. Lee, Energy Environ. Sci. 9, 12–30 (2016)

    Article  Google Scholar 

  5. 5.

    X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, N.J.T. López, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Nat. Photonics. 7, 825–833 (2013)

    Article  Google Scholar 

  6. 6.

    F.W. Zhao, S.X. Dai, Y.Q. Wu, Q.Q. Zhang, J.Y. Wang, L. Jiang, Q.D. Ling, Z.X. Wei, W. Ma, W. You, C.R. Wang, X.W. Zhan, Adv. Mater. 2, 91700144 (2017)

    Google Scholar 

  7. 7.

    H.Z. Yu, Y.C. Ge, S.W. Shi, Electrochim Acta. 180, 645–650 (2015)

    Article  Google Scholar 

  8. 8.

    Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat. Commun. 5, 1–8 (2014)

    Google Scholar 

  9. 9.

    P. Cheng, M.Y. Zhang, T.K. Lau, Y. Wu, B.Y. Jia, J.Y. Wang, C.Q. Yan, M. Qin, X.H. Lu, X.W. Zhan, Adv. Mater. 29, 1605216 (2017)

    Article  Google Scholar 

  10. 10.

    J.B. Zhao, Y.K. Li, G.F. Yang, K.J. Jiang, H.R. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy. 1, 15027 (2016)

    Article  Google Scholar 

  11. 11.

    H.Q. Zhou, Y. Zhang, C.K. Mai, S.D. Collins, G.C. Bazan, T.Q. Nguyen, A.J. Heeger, Adv. Mater. 27, 1767–1773 (2015)

    Article  Google Scholar 

  12. 12.

    R. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci. 4, 285–310 (2011)

    Article  Google Scholar 

  13. 13.

    S. Khodabakhsh, B.M. Sanderson, J. Nelson, T.S. Jones, Adv. Funct. Mater. 16, 95–100 (2006)

    Article  Google Scholar 

  14. 14.

    A. Pasha, A.S. Roy, M.V. Murugendrappa, O.A. Al-Hartomy, S. Khasim, J. Mater. Sci.-Mater. El. 27, 8332–8339 (2016)

    Article  Google Scholar 

  15. 15.

    S.J. Xu, Y.F. Luo, G.W. Liu, G.J. Qiao, W. Zhong, Z.H. Xiao, Y.P. Luo, H. Ou, Electrochim Acta. 156, 20–28 (2015)

    Article  Google Scholar 

  16. 16.

    Y.J. Xia, J.Y. Ouyang, J. Mater. Chem. 12, 4927–4936 (2011)

    Article  Google Scholar 

  17. 17.

    J.J. Lee, S.H. Lee, F.S. Kim, J.H. Kim, Org. Electron. 26, 191–199 (2015)

    Article  Google Scholar 

  18. 18.

    Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Adv. Mater. 23, 1679–1683 (2011)

    Article  Google Scholar 

  19. 19.

    H. Kim, J. Park, S. Lee, C.S. Ha, Y. Kim, Sol. Energy Mater. Sol. Cells. 95, 349–351 (2011)

    Article  Google Scholar 

  20. 20.

    A.M. Nardes, M. Kemerink, R.A.J. Janssen, Adv. Mater. 19, 1196–1200 (2007)

    Article  Google Scholar 

  21. 21.

    M. Dobbelin, R. Marcilla, M. Salsamendi, C. Pozo-Gonzalo, P.M. Carrasco, J.A. .Pomposo, D. Mecerreyes, Chem. Mater. 19, 2147–2149 (2007)

    Article  Google Scholar 

  22. 22.

    J.P. Thomas, L.Y. Zhao, D. McGillivray, K.T. Leung, J. Mater. Chem. A. 2, 2383–2389 (2014)

    Article  Google Scholar 

  23. 23.

    C.K. Najeeb, J.H. Lee, J.B. Chang, J.H. Kim, Nanotechnology. 21, 385302 (2010)

    Article  Google Scholar 

  24. 24.

    W.F. Zhang, B.F. Zhao, Z.C. He, X.M. Zhao, H.T. Wang, S.F. Yang, H.B. Wu, Y. Cao, Energy Environ. Sci. 6, 1956–1964 (2013)

    Article  Google Scholar 

  25. 25.

    C.J. Ko, Y.K. Lin, F.C. Chen, C.W. Chu, Appl. Phys. Lett. 90, 063509–063511 (2007)

    Article  Google Scholar 

  26. 26.

    T. Xiao, W. Cui, J. Anderegg, J. Shinar, R. Shinar, Org. Electron. 12, 257–262 (2011)

    Article  Google Scholar 

  27. 27.

    D.A. Mengistie, M.A. Ibrahem, P.C. Wang, C.W. Chu, ACS Appl. Mater. Interfaces. 6, 2229–2299 (2014)

    Article  Google Scholar 

  28. 28.

    F.F. Kong, C.C. Liu, H.J. Song, J.K. Xu, Synth. Met. 185, 31–37 (2013)

    Article  Google Scholar 

  29. 29.

    Y.P. Li, H.Z. Yu, X.X. Huang, Z.P. Wu, H.H. Xu, Sol. Energy Mat. Sol. Cells. 171, 72–84 (2017)

    Article  Google Scholar 

  30. 30.

    Y. Kim, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, Org. Electron. 10, 205–209 (2009)

    Article  Google Scholar 

  31. 31.

    J.S. Yeo, J.M. Yun, D.Y. Kim, S. Park, S.S. Kim, M.H. Yoon, T.W. Kim, S.I. Na, ACS Appl. Mater. Interfaces. 4, 2551–2560 (2012)

    Article  Google Scholar 

  32. 32.

    H.S. Park, S.J. Ko, J.S. Park, J.Y. Kim, H.K. Song, Sci. Rep. 3, 2454–2460 (2013)

    Article  Google Scholar 

  33. 33.

    H.H. Jin, J.H. Hye, K. Dasom, K.A. Tae, H.I. Sang, Energy Environ. Sci. 8, 1602–1608 (2015)

    Article  Google Scholar 

  34. 34.

    J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Nat. Commun. 5, 5784–5791 (2014)

    Article  Google Scholar 

  35. 35.

    Y.J. Xia, K. Sun, J.Y. Ouyang, Adv. Mater. 24, 2436–2440 (2012)

    Article  Google Scholar 

  36. 36.

    D.M. DeLongchamp, B.D. Vogt, C.M. Brooks, K. Kano, J. Obrzut, C.A. Richter, O.A. Kirillov, E.K. Lin, Langmuir. 21, 11480–11483 (2005)

    Article  Google Scholar 

  37. 37.

    G. Kakavelakis, T. Maksudov, D. Konios, L. Paradisanos, G. Kioseoglou, E.B. Stratakis, E. Kymakis, Adv. Energy Mater. 7, 1602120–1602129 (2017)

    Article  Google Scholar 

  38. 38.

    J.S. Yeo, R. Kang, S. Lee, Y.J. Jeon, N. Myoung, C.L. Lee, D.Y. Kim, J.M. Yun, Y.H. Seo, S.S. Kim, S.I. Na, Nano. Energy. 12, 96–104 (2015)

    Article  Google Scholar 

  39. 39.

    J.S. Yang, S.H. Oh, D.L. Kim, S.J. Kim, H.J. Kim, ACS Appl. Mater. Interfaces. 4, 5394–5398 (2012)

    Article  Google Scholar 

  40. 40.

    F.F. Pang, S. Li, W.Q. Sun, G.Z. Han, Mater. Chem. Phys. 186, 1–5 (2006)

    Google Scholar 

  41. 41.

    S. Kim, H.S. Kim, Y.D. Park, Doped PEDOT:PSS electrodes. Org. Electron. 30, 296–301 (2016)

    Article  Google Scholar 

  42. 42.

    S.H. Chang, W.N. Chen, C.C. Chen, S.C. Yeh, H.M. Cheng, Z.L. Tseng, L.C. Chen, K.Y. Chiu, W.T. Wu, C.T. Chen, Sol. Energy Mater. Sol. Cells. 161, 7–13 (2017)

    Article  Google Scholar 

  43. 43.

    M. Vosgueritchian, D.J. Lipomi, Z. Bao, Adv. Funct. Mater. 22, 421–428 (2012)

    Article  Google Scholar 

  44. 44.

    X.Q. Chen, L.J. Zuo, W.F. i Fu, Q.X. Yan, C.C. Fan, H.Z. Chen, Sol. Energy Mater. Sol. Cells. 111, 1–8 (2013)

    Article  Google Scholar 

  45. 45.

    J.Y. Ouyang, ACS Appl. Mater. Interfaces. 5, 13082–13088 (2013)

    Article  Google Scholar 

  46. 46.

    B. Friedel, P.E. Keicanidis, T.J.K. Brenner, A. Abrusci, C.R. McNeill, R.H. Friend, N.C. Greenham, C. Neil, Macromolecules. 42, 6741–6747 (2009)

    Article  Google Scholar 

  47. 47.

    X.T. Zhang, D.W. Chang, J.R. Liu, Y.J. Luo, J. Mater. Chem. 20, 5080–5085 (2010)

    Article  Google Scholar 

  48. 48.

    D. Alemu, H.Y. Wei, K.C. Ho, C.W. Chu, Energy Environ. 5, 9662–9671 (2012)

    Article  Google Scholar 

  49. 49.

    G. Greczynski, T. Kugler, W.R. Salaneck, Thin Solid Films. 354, 129–135 (1999)

    Article  Google Scholar 

  50. 50.

    H. Yan, H. Okuzaki, Synth. Metals. 159, 2225–2228 (2009)

    Article  Google Scholar 

  51. 51.

    N. Massonnet, A. Carella, A. de Geyer, J.P. Simonato, Chem. Sci. 6, 412–417 (2015)

    Article  Google Scholar 

  52. 52.

    H.J. Kim, S.H. Nam, H. Lee, S.H. Woo, C.S. Ha, M. Ree, Y. Kim, J. Phys. Chem. C. 115, 13502–13510 (2011)

    Article  Google Scholar 

  53. 53.

    T.P. Nguyen, P. Le Rendu, P.D. Long, S.A. De Vos, Surf. Coat. Technol. 180, 646–649 (2004)

    Article  Google Scholar 

  54. 54.

    S.I. Na, G. Wang, S.S. Kim, T.W. Kim, S.H. Oh, B.K. Yu, T. Lee, D.Y.J. Kim, Mater. Chem. 19, 9045–9053 (2009)

    Article  Google Scholar 

  55. 55.

    S. Kim, H.S. Kim, Y.D. Park, Org. Electron. 30, 296–301 (2016)

    Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Grant No. 61474046), and the Natural Science Foundation of Guangdong Province (Grant No. 2017A030313).

Author information



Corresponding author

Correspondence to Huangzhong Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 142 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Yu, Z., Yu, H. et al. Effect of trifluoroacetic acid treatment of PEDOT:PSS layers on the performance and stability of organic solar cells. J Mater Sci: Mater Electron 29, 6607–6618 (2018). https://doi.org/10.1007/s10854-018-8645-8

Download citation