Effect of trifluoroacetic acid treatment of PEDOT:PSS layers on the performance and stability of organic solar cells

  • Zuping Wu
  • Ziqi Yu
  • Huangzhong YuEmail author
  • Xinxin Huang
  • Mingdong Chen


The photoelectric characteristics of poly(3,4-ethylenedioxythio phene):poly(styrene sulfonate) (PEDOT:PSS) treated with the different concentrations of trifluoroacetic acid (TFA) is in-depth investigated. The results show treatment of PEDOT:PSS layers by TFA manipulates the molecular structure of PEDOT:PSS chains, enhances the conductivity and work function of PEDOT:PSS. More interestingly, polymer solar cells with PEDOT:PSS treated by TFA as anode interfacial layers (AILs) exhibit the longer stability of the devices and the higher power conversion efficiency (PCE) of the devices. The best PCE of the devices based on poly(3-hexyltthiophene) and [6,6]-phenyl-C60-butyric acid methyl ester gets to 4.10 ± 0.21%, increasing by as large as 35.8% compared to that of the devices with pristine PEDOT:PSS as AIL. The enhanced PEDOT:PSS conductivity improves the short circuit current density (J SC ) and fill factor of the devices. The devices with PEDOT:PSS treated by TFA as AILs remain ~ 25% of their initial efficiency after 63 days storage. On the other hand, the pristine PEDOT:PSS devices remain only ~ 1%.



This work was financially supported by the National Natural Science Foundation of China (Grant No. 61474046), and the Natural Science Foundation of Guangdong Province (Grant No. 2017A030313).

Supplementary material

10854_2018_8645_MOESM1_ESM.doc (142 kb)
Supplementary material 1 (DOC 142 KB)


  1. 1.
    A. Rao, P.C.Y. Chow, S. Gelinas, C.W. Schlenker, C.Z. Li, H.L. Yip, A.K.Y. Jen, D.S. Ginger, R.H. Friend, Nature. 500, 435–439 (2013)CrossRefGoogle Scholar
  2. 2.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics. 6, 591–595 (2012)CrossRefGoogle Scholar
  3. 3.
    H.Z. Yu, X.X. Huang, Y.P. Li, Z.P. Wu, J. Mater. Sci.-Mater. El. 28, 12909–12915 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Kim, K.G. Lim, T.W. Lee, Energy Environ. Sci. 9, 12–30 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, N.J.T. López, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Nat. Photonics. 7, 825–833 (2013)CrossRefGoogle Scholar
  6. 6.
    F.W. Zhao, S.X. Dai, Y.Q. Wu, Q.Q. Zhang, J.Y. Wang, L. Jiang, Q.D. Ling, Z.X. Wei, W. Ma, W. You, C.R. Wang, X.W. Zhan, Adv. Mater. 2, 91700144 (2017)Google Scholar
  7. 7.
    H.Z. Yu, Y.C. Ge, S.W. Shi, Electrochim Acta. 180, 645–650 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat. Commun. 5, 1–8 (2014)Google Scholar
  9. 9.
    P. Cheng, M.Y. Zhang, T.K. Lau, Y. Wu, B.Y. Jia, J.Y. Wang, C.Q. Yan, M. Qin, X.H. Lu, X.W. Zhan, Adv. Mater. 29, 1605216 (2017)CrossRefGoogle Scholar
  10. 10.
    J.B. Zhao, Y.K. Li, G.F. Yang, K.J. Jiang, H.R. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy. 1, 15027 (2016)CrossRefGoogle Scholar
  11. 11.
    H.Q. Zhou, Y. Zhang, C.K. Mai, S.D. Collins, G.C. Bazan, T.Q. Nguyen, A.J. Heeger, Adv. Mater. 27, 1767–1773 (2015)CrossRefGoogle Scholar
  12. 12.
    R. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci. 4, 285–310 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Khodabakhsh, B.M. Sanderson, J. Nelson, T.S. Jones, Adv. Funct. Mater. 16, 95–100 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Pasha, A.S. Roy, M.V. Murugendrappa, O.A. Al-Hartomy, S. Khasim, J. Mater. Sci.-Mater. El. 27, 8332–8339 (2016)CrossRefGoogle Scholar
  15. 15.
    S.J. Xu, Y.F. Luo, G.W. Liu, G.J. Qiao, W. Zhong, Z.H. Xiao, Y.P. Luo, H. Ou, Electrochim Acta. 156, 20–28 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.J. Xia, J.Y. Ouyang, J. Mater. Chem. 12, 4927–4936 (2011)CrossRefGoogle Scholar
  17. 17.
    J.J. Lee, S.H. Lee, F.S. Kim, J.H. Kim, Org. Electron. 26, 191–199 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Adv. Mater. 23, 1679–1683 (2011)CrossRefGoogle Scholar
  19. 19.
    H. Kim, J. Park, S. Lee, C.S. Ha, Y. Kim, Sol. Energy Mater. Sol. Cells. 95, 349–351 (2011)CrossRefGoogle Scholar
  20. 20.
    A.M. Nardes, M. Kemerink, R.A.J. Janssen, Adv. Mater. 19, 1196–1200 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Dobbelin, R. Marcilla, M. Salsamendi, C. Pozo-Gonzalo, P.M. Carrasco, J.A. .Pomposo, D. Mecerreyes, Chem. Mater. 19, 2147–2149 (2007)CrossRefGoogle Scholar
  22. 22.
    J.P. Thomas, L.Y. Zhao, D. McGillivray, K.T. Leung, J. Mater. Chem. A. 2, 2383–2389 (2014)CrossRefGoogle Scholar
  23. 23.
    C.K. Najeeb, J.H. Lee, J.B. Chang, J.H. Kim, Nanotechnology. 21, 385302 (2010)CrossRefGoogle Scholar
  24. 24.
    W.F. Zhang, B.F. Zhao, Z.C. He, X.M. Zhao, H.T. Wang, S.F. Yang, H.B. Wu, Y. Cao, Energy Environ. Sci. 6, 1956–1964 (2013)CrossRefGoogle Scholar
  25. 25.
    C.J. Ko, Y.K. Lin, F.C. Chen, C.W. Chu, Appl. Phys. Lett. 90, 063509–063511 (2007)CrossRefGoogle Scholar
  26. 26.
    T. Xiao, W. Cui, J. Anderegg, J. Shinar, R. Shinar, Org. Electron. 12, 257–262 (2011)CrossRefGoogle Scholar
  27. 27.
    D.A. Mengistie, M.A. Ibrahem, P.C. Wang, C.W. Chu, ACS Appl. Mater. Interfaces. 6, 2229–2299 (2014)CrossRefGoogle Scholar
  28. 28.
    F.F. Kong, C.C. Liu, H.J. Song, J.K. Xu, Synth. Met. 185, 31–37 (2013)CrossRefGoogle Scholar
  29. 29.
    Y.P. Li, H.Z. Yu, X.X. Huang, Z.P. Wu, H.H. Xu, Sol. Energy Mat. Sol. Cells. 171, 72–84 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Kim, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, Org. Electron. 10, 205–209 (2009)CrossRefGoogle Scholar
  31. 31.
    J.S. Yeo, J.M. Yun, D.Y. Kim, S. Park, S.S. Kim, M.H. Yoon, T.W. Kim, S.I. Na, ACS Appl. Mater. Interfaces. 4, 2551–2560 (2012)CrossRefGoogle Scholar
  32. 32.
    H.S. Park, S.J. Ko, J.S. Park, J.Y. Kim, H.K. Song, Sci. Rep. 3, 2454–2460 (2013)CrossRefGoogle Scholar
  33. 33.
    H.H. Jin, J.H. Hye, K. Dasom, K.A. Tae, H.I. Sang, Energy Environ. Sci. 8, 1602–1608 (2015)CrossRefGoogle Scholar
  34. 34.
    J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Nat. Commun. 5, 5784–5791 (2014)CrossRefGoogle Scholar
  35. 35.
    Y.J. Xia, K. Sun, J.Y. Ouyang, Adv. Mater. 24, 2436–2440 (2012)CrossRefGoogle Scholar
  36. 36.
    D.M. DeLongchamp, B.D. Vogt, C.M. Brooks, K. Kano, J. Obrzut, C.A. Richter, O.A. Kirillov, E.K. Lin, Langmuir. 21, 11480–11483 (2005)CrossRefGoogle Scholar
  37. 37.
    G. Kakavelakis, T. Maksudov, D. Konios, L. Paradisanos, G. Kioseoglou, E.B. Stratakis, E. Kymakis, Adv. Energy Mater. 7, 1602120–1602129 (2017)CrossRefGoogle Scholar
  38. 38.
    J.S. Yeo, R. Kang, S. Lee, Y.J. Jeon, N. Myoung, C.L. Lee, D.Y. Kim, J.M. Yun, Y.H. Seo, S.S. Kim, S.I. Na, Nano. Energy. 12, 96–104 (2015)CrossRefGoogle Scholar
  39. 39.
    J.S. Yang, S.H. Oh, D.L. Kim, S.J. Kim, H.J. Kim, ACS Appl. Mater. Interfaces. 4, 5394–5398 (2012)CrossRefGoogle Scholar
  40. 40.
    F.F. Pang, S. Li, W.Q. Sun, G.Z. Han, Mater. Chem. Phys. 186, 1–5 (2006)Google Scholar
  41. 41.
    S. Kim, H.S. Kim, Y.D. Park, Doped PEDOT:PSS electrodes. Org. Electron. 30, 296–301 (2016)CrossRefGoogle Scholar
  42. 42.
    S.H. Chang, W.N. Chen, C.C. Chen, S.C. Yeh, H.M. Cheng, Z.L. Tseng, L.C. Chen, K.Y. Chiu, W.T. Wu, C.T. Chen, Sol. Energy Mater. Sol. Cells. 161, 7–13 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Vosgueritchian, D.J. Lipomi, Z. Bao, Adv. Funct. Mater. 22, 421–428 (2012)CrossRefGoogle Scholar
  44. 44.
    X.Q. Chen, L.J. Zuo, W.F. i Fu, Q.X. Yan, C.C. Fan, H.Z. Chen, Sol. Energy Mater. Sol. Cells. 111, 1–8 (2013)CrossRefGoogle Scholar
  45. 45.
    J.Y. Ouyang, ACS Appl. Mater. Interfaces. 5, 13082–13088 (2013)CrossRefGoogle Scholar
  46. 46.
    B. Friedel, P.E. Keicanidis, T.J.K. Brenner, A. Abrusci, C.R. McNeill, R.H. Friend, N.C. Greenham, C. Neil, Macromolecules. 42, 6741–6747 (2009)CrossRefGoogle Scholar
  47. 47.
    X.T. Zhang, D.W. Chang, J.R. Liu, Y.J. Luo, J. Mater. Chem. 20, 5080–5085 (2010)CrossRefGoogle Scholar
  48. 48.
    D. Alemu, H.Y. Wei, K.C. Ho, C.W. Chu, Energy Environ. 5, 9662–9671 (2012)CrossRefGoogle Scholar
  49. 49.
    G. Greczynski, T. Kugler, W.R. Salaneck, Thin Solid Films. 354, 129–135 (1999)CrossRefGoogle Scholar
  50. 50.
    H. Yan, H. Okuzaki, Synth. Metals. 159, 2225–2228 (2009)CrossRefGoogle Scholar
  51. 51.
    N. Massonnet, A. Carella, A. de Geyer, J.P. Simonato, Chem. Sci. 6, 412–417 (2015)CrossRefGoogle Scholar
  52. 52.
    H.J. Kim, S.H. Nam, H. Lee, S.H. Woo, C.S. Ha, M. Ree, Y. Kim, J. Phys. Chem. C. 115, 13502–13510 (2011)CrossRefGoogle Scholar
  53. 53.
    T.P. Nguyen, P. Le Rendu, P.D. Long, S.A. De Vos, Surf. Coat. Technol. 180, 646–649 (2004)CrossRefGoogle Scholar
  54. 54.
    S.I. Na, G. Wang, S.S. Kim, T.W. Kim, S.H. Oh, B.K. Yu, T. Lee, D.Y.J. Kim, Mater. Chem. 19, 9045–9053 (2009)CrossRefGoogle Scholar
  55. 55.
    S. Kim, H.S. Kim, Y.D. Park, Org. Electron. 30, 296–301 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and OptoelectronicsSouth China University of TechnologyGuangzhouChina
  2. 2.School of Materials Science & EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.School of Electronic and Information EngineeringUniversity of Science and TechnologyAnshanChina

Personalised recommendations